A Semantic Approach to XML-Based Data Integration

Patricia Rodriguez-Gianolli and John Mylopoulos

Department of Computer Science, University of Toronto,
6 King’s College Road, Toronto, Canada M5S 3HS
{prg,jm}e@cs.toronto.edu

Abstract. The paper describes a prototype tool, named DIXSE, which supports
the integration of XML Document Type Definitions (DTDs) into a common
conceptual schema. The mapping from each individual DTD into the common
schema is used to automatically generate wrappers for XML documents, which
conform to a given DTD. These wrappers are used to populate the common
conceptual schema thereby achieving data integration for XML documents.

1 Introduction

Integrating data from multiple heterogeneous data sources has been a major focus of
database research for more than two decades. Heterogeneity, in both conventional and
semistructured databases, arises from the adoption of different data models and/or
different schemas by two data sources. With the widespread acceptance of the Web as
the primary vehicle for data interchange, interest in data integration has been
renewed, with a focus on semistructured data. However, little has been proposed yet
for data integration of XML documents. XML, as a standard for representing both
structured text documents and data on the Web, facilitates data publishing and
interchange. This is accomplished through a simple syntax which, unlike HTML, is
intended for both human browsing and computer consumption. Among the many
advantages of XML over HTML we note that XML separates cleanly information
content from presentation details. Moreover, XML tags are user-defined and can
therefore be used to describe what data mean as opposed to how they should look.
Finally, XML documents can be validated against grammar-like specifications known
as Document Type Definitions (DTDs). It must be emphasized, however, that XML
is intended as a language for describing the syntactic structure of a document, not its
meaning. This makes the data integration task a difficult one for XML data. As
pointed out in [23], the key to successful data integration is the identification of
interschema relationships. The more expressive the underlying data model(s), the
higher the chance of identifying interschema relationships and hence the easier the
task of data integration.

The DIXSE! system presented in this paper addresses in a semi-automatic fashion
the integration problem for XML data. Unlike most approaches, we address the
problem from a conceptual modeling perspective. DIXSE is capable of semi-

'DIXSE stands for “Data Integration for XML based on Schematic Knowledge”.

automatically deriving a common semantic description (in the form of a conceptual
schema) from a set of input DTDs and allows the user to enrich and fine-tune this
description with additional domain expertise. Given the mapping from input DTDs to
the common conceptual schema, DIXSE automatically generates wrappers for XML
documents that conform to these DTDs and populates the conceptual schema. Full
details about the DIXSE implementation and the case study that has been used to
validate the approach can be found in [21].

Approaches to the problem of data integration have generally adopted a traditional
schema integration approach for heterogeneous structured databases, or a (more
recent) semistructured data integration approach.

In traditional schema integration research, the identification of interschema
relationships can be done at different levels of abstraction. In their comprehensive
schema integration survey, Ram and Ramesh [19] indicate that the abstraction level at
which interschema relationship identification techniques operate defines the nature of
available semantic knowledge. Approaches at the conceptual schema level can deduce
relationships among objects [14,25,1]. Other approaches employ the semantics
conveyed by integrity constraints [20] or data values [12] to support data integration.
Regardless of the approach, the derived relationships can be modified or confirmed by
human integrators. This external input can be viewed as adding domain knowledge
that was not captured in the original data sources. The generation of the integrated
schema is then driven by the expressiveness of the data model (relational, semantic,
object-oriented or logic-based model) chosen to describe the input schemas. The
DIXSE system we propose inherits and extends this approach.

Interschema relationship identification is done differently in data integration
systems for semistructured data [5,16,4,13,6]. The lack of a schema in semistructured
data sources makes the conceptual schema approach previously described
inappropriate. The data integration approach, on the other hand, relies mostly on the
query language provided by these systems. The query language supports special
constructs for accessing and integrating data sources, such as query primitives for
dealing with type or structure mismatches and data restructuring. A problem with
semistructured data models is that they do assume a schema, but provide very few
modeling abstractions (essentially, only labeled graphs) to capture semantics. Given
that the main purpose of XML data is to facilitate data exchange with structure?, we
favor a semi-automatic schema integration approach rather than a data-centered one.
The DIXSE system exploits the schematic information provided by XML DTDs to
derive a conceptual schema of the information represented by XML data.

Related work with similar motivations has recently been presented in [15,2]. In
[15], the authors also propose a semantic data model as the basis for integrating XML
data sources; we differ from them by using a richer data model and a semi-automatic
mechanism to derive the target schemas. In [2], pieces of information contained in
XML fragments are mapped to domain specific ontologies. Unlike this work, DIXSE
combines the conceptual schema definition and mapping creation into a single step. In
addition, it supports the notions of user-defined keys and intradocument and
interdocument links, which play a central role when performing object identification
and object fusion during the data integration phase.

2 The schema is mostly needed for interoperability.

DIXSE blends techniques from conventional and semistructured data integration
systems into a framework specifically designed for XML data. A metamodeling
language, Telos [17,18], is used to represent both the DIXSE data model and the
derived conceptual schemas. Telos supports attribution, classification and
generalization; it also offers a novel treatment of attributes, which can be exploited to
define any conceptual model. Another research project that uses Telos as the target
language for mapping DTDs is [7]. We differ from them by providing a user-
customized mapping with an emphasis on data integration.

The rest of the paper is structured as follows. Section 2 presents a quick overview
of XML and Telos. Section 3 describes the DIXSE framework for mapping DTDs to a
Telos conceptual schema, while section 4 outlines the mapping language through
which the user can define directives on how the mapping is to be done. Section 5
presents an overview of a case study that involves several XML documents and DTDs
for SIGMOD Record publications. Section 6 describes the DIXSE architecture and
implementation, while section 7 summarizes the contributions of the paper and
suggests directions for further research.

2 XML and Telos

We provide a brief overview of XML and Telos. For more comprehensive
information about XML and Telos, the reader is referred to [10] and [17,18],
respectively.

XML is used to markup documents for purposes of presentation (like HTML) or
further processing. Marked-up documents are called XML documents. The basic
component of an XML document is the element, that is, a piece of text bounded by
matching tags such as <article> and </article>. The content of an element
can be raw text, other elements or a combination of the two. The term subelement is
used to describe the relationship between an element and its component elements. In
addition, elements may contain attributes. Attributes are “name-value” pairs specified
in the start tag of an element. The structure of an XML document can be described by
a Document Type Definition (DTD). A DTD provides a list of elements and attributes
contained in a document and the relationships between them. FElement type
declarations describe the name of the tag being declared (e.g. article) and the
allowed contents of that tag, usually referred to as content specification. Attributes are
declared for specific element types using attribute-list declarations.

Telos provides facilities for constructing, querying and updating structured
knowledge bases. A Telos knowledge base consists of structured objects built out of
two kinds of primitive units: individuals and attributes. The first ones are intended to
represent entities, while the second ones represent binary relationships between
entities or other relationships. Individuals and attributes are treated uniformly by the
mechanisms of structuring a knowledge base. The term proposition is used to denote
either an individual or an attribute. Propositions are organized along three
dimensions: attribution, classification and generalization. The first relates a
proposition to the values of all its attributes (by default, attributes in Telos are
multivalued). The classification dimension calls for each proposition to be an instance

of one or more generic propositions or classes. Propositions (both individuals and
attributes) are classified into fokens (propositions having no instances and
representing concrete objects in the modeled domain), simple classes (propositions
having tokens as instances; these represent generic concepts), metaclasses
(propositions having simple classes as instances), metametaclasses and so on. In
addition, @-classes are propositions with instances from any level. Finally -- and
orthogonal to the classification dimension -- class propositions can be organized in
terms of generalization or ISA hierarchies. In general, there will be one such
hierarchy for each classification level (i.e., for simple classes, metaclasses, etc.).

3 The DIXSE Framework

The DIXSE framework supports the derivation of a conceptual schema from several
input DTDs. The data model used for the conceptual schema offers concepts such as
entity, attribute, and mapping. Since Telos is a language for metamodeling, the data
model can be extended with additional semantic primitives (e.g., activity, goal, agent)
depending on the semantics of the information that is to be integrated. Figure 1
illustrates the structure of a Telos representation of the DIXSE XML model (at the
MetaClass and o levels), a DIXSE conceptual schema for an XML DTD (at the
SimpleClass level) and some XML data (at the token or object level). Planes in the
figure depict classification levels; gray links represent “instance-of” links between
two consecutive classification levels or between a classification level and the o-level.

MetaClass

DIXSE Framework Classes
level

o-level

SimpleClass Conceptual Schema for
level SigmodRecord.dtd

SigmodRecord instance (data)
Token level

Fig. 1. Telos representation of the DIXSE data model

XMLFrameworkClass

3.1 The Data Model

Conceptual schemas are represented in DIXSE as collections of entity types and their
attributes. The model supports four main concepts: entity class, entity attribute,

mapping and document type. An entity class represents types of objects or concepts
found in the input DTDs. Figure 2 shows a DTD that describes the structure of a
hypothetical XML-based SIGMOD Record database. In this schema, there are at least
four XML elements that represent different types of entities: SigmodRecord,
Issue, Article and Author. The rest of the elements and attributes (such as
volume, title, contactAuthor, etc) may be thought as attributes of these
entity types. Mappings describe particular conceptual schemas of the information
represented by DTDs. A mapping may be thought as a wrapper for a collection of
interrelated entity classes. Finally, document types describe DTDs and the collection
of mappings attached to them.

<!ELEMENT SigmodRecord (issue)+>

<!ELEMENT issue (volume,number,articles)>

<!ELEMENT volume (#PCDATA)>

<!ELEMENT number (#PCDATA)>

<!ELEMENT articles (article)* >

<!ELEMENT article (title,numberOfPages,fullText,contact,authors)>
<!ATTLIST contact (EMPTY) >

<!ATTLIST contact contactAuthor IDREF #IMPLIED>
<!ELEMENT title (#PCDATA)>

<!ELEMENT numberOfPages (#PCDATA)>

<!ELEMENT fullText (size?)>

<!ATTLIST fullText xLink:type CDATA #FIXED 'simple'>
<!ATTLIST fullText xLink:href CDATA #IMPLIED>
<!ELEMENT size (#PCDATA)>

<!ELEMENT authors (author) *>

<!ELEMENT author (name,address) >

<!ATTLIST author organization CDATA #IMPLIED>
<!ATTLIST author degree (bachelor|master|phd) “phd”)
<!ATTLIST author id ID #REQUIRED>

<!ELEMENT name (firstName?,lastName)>

<!ELEMENT firstName (#PCDATA)>

<!ELEMENT lastName (#PCDATA) >

<!ELEMENT address (home|office)>

<!ELEMENT home (#PCDATA)>

<!ELEMENT office (#PCDATA)>

Fig. 2. XML DTD SigmodRecord.dtd

Figure 3 offers a complete Telos description of the DIXSE data model in semantic
network notation. The figure illustrates the different relationships among DIXSE
concepts and how Telos has been used to model them. To improve readability, we
have used several drawing conventions. Ellipses represent classes; gray links
represent “instance-of” links while black links represent attributes.

In addition to the distinction between entity classes and attributes, the data model
classifies attributes along two orthogonal dimensions. The first facility distinguishes
three categories of attributes, namely components, properties and links. An attribute
is a component when it represents one component (of the structure) of an entity (e.g.
XML element name). An attribute is a property when it represents information about
the content of an entity (e.g. organization CDATA attribute). Finally, a link
attribute represents intradocument or interdocument information (e.g.
contactAuthor IDREF and hre f XLINK attributes).

The distinction between components and properties in our data model is inspired
by the difference between XML elements and attributes, according to the XML 1.0
Recommendation [10]. In addition, we have chosen to model IDREF and simple

XLINK attributes as special link attributes because they represent special
relationships among XML data. Through this distinction, the DIXSE model
recognizes the different roles that each entity attribute plays at the time of data
integration.

Attribute categories are represented in Telos using three attribute metaclasses:
“hasComponents”, “hasProperties” and ‘“hasLinks”. Instances of metaclass
XmlPropertyClass (i.e. XmICDATAProperty, XmlIDProperty and
XmIENUMProperty) model different types of XML properties. Each of these attribute

metaclasses contains as instances particular entity attributes (i.e. components,
properties or links).

context
MetametaClass level

dtdName

ng/)
Xmm"c“memc“ sourceDTD
hasMappings @ sourceMAP
XmIMappingClass)
et mappingName ‘V
hasComponents /
smpenies - §
XmlProptyC
4
XmICDATAProperty XmIENUMProperty

XmlIIDProperty

@-level

conceptualSchemaRoot

SSE[DMA0MIWRA I

MetaClass level

XmIPCDATA

XmlSingleton

SimpleClass level

Fig. 3. Telos definition of the DIXSE data model

The second dimension for classifying attributes models frequently used constraints
or characteristics of attribute values, regardless of their category. These constraints
are inspired by the constraints that XML itself imposes on elements and attributes,
namely: the occurrence and choice indicators for XML elements (i.e. ™ 27, ™ *” 4+
and “|”) and the attribute modifiers for XML attributes (i.e. “#FIXED”,
“#REQUIRED” and “#IMPLIED”).

Attribute constraints are modeled in Telos using nine attribute metaclasses at the
wo-level. Attribute metaclasses “exactlyOne”, “atMostOne”, “zeroOrMore” and
“oneOrMore” are used to model mandatory or optional single-valued attributes (the
first two) or multi-valued attributes (the second two). The attribute metaclass “union”
is used to restrict an attribute defined in a given class to be exclusive with respect to
other “union” attributes (i.e. only one has a value). The attribute metaclass “fixed” is
used to restrict an attribute to have a fixed (user-supplied) value. Attribute
metaclasses “idRef” and “xLink” restrict an attribute to be the recipient of an

intradocument or interdocument reference, respectively. Last, the attribute metaclass
“key” restricts an attribute to have exactly one single and unique value. Instances of
class XMLFrameworkClass can have a key composed of more than one attribute.

A mapping consists of a conceptual schema which models the information
represented by a given DTD, typically authored for a given context. Mappings
attempt to capture the meaning, interpretation or intended use of the data sources to be
integrated. Different perspectives or views of the data may lead to different models of
relationships among objects. The application context in which relationships are stated
is fundamental for capturing the real-world semantics that will drive the data
integration process (e.g. a bibliographical library context versus a scientific e-mail
directory one).

Finally, a document type describes a given DTD and a collection of mappings (i.e.
conceptual schemas) attached to it. Contexts are represented in the data model as
distinguishing attributes (string names) of document types, mappings and entity
classes. At a higher level, contexts may be thought of as partitions of the semantic
model. Each partition clusters information about a specific application domain, and
provides the appropriate framework for the creation of unique entity classes and their
instances (that is, two conceptual schemas using entity class Author refer to the
same concept if they belong to the same context).

Mappings and document types are represented in Telos using two metaclasses:
XmlMappingClass and XmlDocumentClass, respectively. To record the origin of
entity attributes, we define two attributes metaclasses (sourceMap and sourceDTD)
using Telos’ “attributes on attributes” feature.

3.2 Default Mapping

The DIXSE framework supports the derivation of a default conceptual schema for a
given DTD. This mapping is based on heuristic rules on what DTD constructs usually
represent, and thus captures only partially the semantics conveyed by the data. The
main value of this mapping mechanism is that it offers a starting point for a user-
defined mapping for a given DTD. Additional domain expertise or contextual
knowledge can be added into the default mapping through specifications written in
DIXml (see Section 4).

The conceptual schema derivation process takes a single DTD as input and
generates a DIXSE conceptual schema as output. Basically, the process analyzes the
schematic information provided by the DTD and mines a conceptual representation of
it by applying a set of heuristic rules. These rules were discovered by manually trying
out derivations, and analyzing the results. As a whole, they aim at identifying a
correspondence between elements and attributes of DTDs and entity classes and
attributes of the DIXSE model. Since mapping directly all elements with structure
into entity classes is likely to lead to excessive fragmentation of the mapping, they
also intend to reduce the number of entity classes. Only the most specific rule is
applied. Below we describe two mapping rules that drive the derivation process and
illustrate their use with examples from “SigmodRecord.dtd”.

The first default mapping rule (DR1) maps an XML element with complex content
model (i.e. excluding #PCDATA, ANY and EMPTY types) into a DIXSE entity

class. In addition, it creates: a component attribute for each subelement, a property
attribute for each XML CDATA, ID and ENUM attribute, and a link attribute for
each XML IDREF or XLINK attribute. For example, this rule is applicable to the

author element. The following Telos specification illustrates its mapping:
SimpleClass Author in XmlEntityClass,
XmlFrameworkClass with
hasComponents, exactlyOne
name : Name;
address : Address
end

Another rule (DR3) maps the XML attributes of an EMPTY element into DIXSE
entity attributes. The element’s attributes are collapsed (or inlined) as either property
or link attributes of immediate parent elements’ entity classes. Each entity attribute is
named with the result of concatenating the EMPTY element name, the string “ * and
the proper XML attribute name. EMPTY elements without attributes are not mapped
into DIXSE. This rule can be applied to the contact element; the following link

attribute definition is included in the element article’s entity class:
SimpleClass Article in XmlEntityClass,
XmlFrameworkClass with
hasLinks, atMostOne, idRef
contact contactAuthor : XmlSimpleEntity
end

The complete set of default mapping rules can be summarized as follows. The first
two (DR1 and DR2) are concerned with identifying XML elements that represent
entities. For us, elements with structure or atomic elements with distinguishing
characteristics (like an ID attribute) embody the notion of a concept or an entity.
Therefore, such elements are considered good candidates for DIXSE entity classes.
Rules DR3 and DR4 describe how the remaining elements can be mapped into entity
attributes. Rules DR5 and DR6 indicate how constraints on element values can be
translated into additional knowledge (DIXSE attribute constraints). Last, rule DR7
recognizes the fact that some elements in the DTD (in particular those representing
“x> or “+” lists, like the articles element) function more as delimiters (non-
terminals in the grammar) than as meaningful entities. This rule helps to reduce the
number of entity classes in the derived schema.

Figure 4 shows the default conceptual schema derived for “SigmodRecord.dtd”.
Please note that only some “instance-of” links with respect to DIXSE metaclasses are
shown to keep the figure relatively uncluttered. Unless otherwise specified, all entity
attributes in the figure are instances of the “hasComponents” attribute category.
According to this mapping, there are seven entity classes. Interestingly, users with
specific domain expertise may indicate that the entity classes FullText, Address
and Name do not represent objects in the underlying data sources. Moreover, they
could argue that the derived mapping does not convey much of the implied semantics.
To overcome these deficiencies, DIXSE offers the possibility of customizing the
default mapping.

hasProperties hasLinks union
\

SimpleClass level

\
organization XmICDATAProperty
) \ degree [|
@ XmIENUMProperty
w-

XmIPCDATA XmIPCDATA

Fig. 4. Default Mapping for SigmodRecord.dtd

4 The Mapping Language

DIXml® is a declarative mapping language for specifying a DTD mapping to a
conceptual schema. This specification annotates a DTD with simple instructions for
generating entity classes from DTD element type declarations. In the same spirit of
XSL stylesheets [11], DIXml specifications accompany DTDs to provide an extra
level of information to XML data.

The DIXml specification model revolves around the idea of directive rules. A
directive rule, hereinafter called directive, is the main mapping construct offered by
the language. A DIXSE mapping can be defined by a collection of directives (at most
one per DTD element declaration type). Each directive describes particular
preferences for generating a conceptual representation of an XML element. These
preferences are combined with the default mapping rules (presented in Section 3.2) to
produce a conceptual schema.

There are five different directive actions, namely: default, create-class, create-
attribute, inline, and ignore. The default directive indicates that the default mapping
rules (DR1 to DR7) should be applied to the target element. Its inclusion or omission
in the mapping specification does not affect the generated conceptual schema. The
create-class directive says that the target element should be mapped into an entity
class, while the create-attribute directive indicates that the target element should be
mapped into a component attribute of immediate parent entity classes, without
creating an entity class for it. On the other hand, the inline and ignore directives
indicate that neither an entity class nor a component attribute should be created for the
target element. In the first case, the meaning of the inline directive is to collapse the

3 The acronym DIXml stands for “Data Integration for XML mapping language”.

target element’s content (both XML subelements and attributes) into entity attributes
of immediate parent entity classes. This directive works as a grammar re-writing rule
that can be applied to XML elements with content models made of atomic or empty
subelements*. Last, the ignore directive indicates that neither the target element nor
its content should be included in the derived mapping, unless otherwise specified (e.g.
keep component directive for a particular subelement).

In addition, the user can provide supplementary information with each of these
directives. For example: a different entity class name or attribute label (AS and
label clauses); classification or generalization relationships with respect to
previously created entity classes (IN and ISA clauses); an indication for mapping
XML attributes into entity properties (properties clause); explicit identification
of interschema relationships (xLink clause); etc.

<?xml version="1.0" encoding="UTF-8"?> <!ELEMENT component (default
<!-— DTD File: DIXSEmapping.dtd --> | ignore

| keep
<!-- DIXSE-MAPPING specification --> | subclassing

| union)>
<!ELEMENT DIXSEmapping (directive*)> <!-- Attributes for component -->
<!-- Attributes for DIXSEmapping --> <!ATTLIST component num CDATA #REQUIRED>
<!ATTLIST DIXSEmapping name CDATA #REQUIRED> <!ATTLIST component label CDATA #IMPLIED>
<!ATTLIST DIXSEmapping dtd CDATA #REQUIRED> <!ATTLIST component AT-class CDATA #IMPLIED>
<!ATTLIST DIXSEmapping context CDATA #IMPLIED> <!ATTLIST component key (yes|no) 'no'>

<!ATTLIST component WITH-class CDATA #IMPLIED>

<!ELEMENT directive (default

| create-class <!-- CREATE-ATTRIBUTE directive -->

| create-attr

| inline <!ELEMENT create-attr EMPTY>

| ignore) > <!—— Attributes for create-attr element —->
<!-- Attributes for directive --> <!ATTLIST create-attr WITH-type CDATA #IMPLIED>
<!ATTLIST directive elem CDATA #REQUIRED> <!ATTLIST create-attr properties (on|off) 'on'>

<!ATTLIST create-attr xlink CDATA #IMPLIED>
<!-- DEFAULT directive -->
<!-- INLINE directive -->
<!ELEMENT default EMPTY>
<!ELEMENT inline (component)*>

<!-- CREATE-CLASS directive --> <!-- List of attributes for inline -->
<!ATTLIST inline naming (on|off) 'off'>

<!ELEMENT create-class (component*)> <!ATTLIST inline properties (on|off) 'on'>

<!—- Attributes for create-class --> <!ATTLIST inline xlink CDATA #IMPLIED>

<!ATTLIST create-class AS CDATA #IMPLIED>

<!ATTLIST create-class IN CDATA #IMPLIED> <!-- IGNORE directive -->

<!ATTLIST create-class ISA CDATA #IMPLIED>
<!ATTLIST create-class properties (on|off) 'on'> <!ELEMENT ignore EMPTY>
<!ATTLIST create-class xlink CDATA #IMPLIED>

Fig. 5. DIXml syntax

A create-class or inline directive body can have zero or more component
elements, where each one describes local mapping considerations for a subelement.
For example, this allows choosing where the attribute definition should take place or
indicating if the component should be part of the entity class key. The system
supports a multivalued key per entity class. A component attribute can be part of the
entity class key only if its value is single and mandatory. There are five possible
component directives: default, ignore, keep, subclassing and union. The first one
indicates that the default mapping rules should be applied to the component. The
ignore and keep component directives allow us to explicitly discard or consider the

4 This constraint prevents recursive collapsing of XML elements.

element as a candidate component attribute. These directives serve to override any
global directive stated for this particular XML element (i.e. ignore directive action).
Last, the subclassing and union directives provide explicit instructions on how to map
simple alternative components.

DIXml Specifications.

Mapping specifications are written in XML. DIXml, as a markup language in its own
right, provides a vocabulary to describe DIXSE mappings. The main two elements in
this vocabulary are directive and DIXSEmapping. The first one represents a
DIXml directive rule, while the second one represents the mapping itself by
encompassing the collection of specified directive rules. Figure 5 shows the “end-
user” syntax of DIXml, given as a DTD grammar.

5 The Case Study

We illustrate DIXSE’s data integration approach through a case study. The case study
we have adopted is based on the XML version of the ACM SIGMOD Record
database [27]. The repository, built by the Araneus Group [3], contains a collection of
approximately 1,000 XML documents. The documents are classified according to
four different DTDs: HomePage.dtd, ProceedingsPage.dtd,
OrdinaryIssuePage.dtd and IndexTermsPage.dtd. The HomePage
DTD describes XML documents that represent the SIGMOD Record database as a
collection of issues. Issues are firstly organized per year of edition, and then per
number. Each issue contains some information about its volume, number and
conference details. The ProceedingsPage and OrdinaryIssuePage DTDs
describe two different types of issues: conference proceedings and ordinary issues,
respectively. Regardless of whether an issue represents a conference proceedings or
an ordinary issue, it is characterized by volume, number and date information, along
with a collection of sections and articles. Each article has a title and a list of authors,
among other relevant information. Last, the IndexTermsPage DTD describes
specific indexing information for a SIGMOD Record article (such as its title, abstract,
and a list of index terms).

Using the same application context, we process the four DTDs through the DIXSE
system. The result of the process is an integrated conceptual schema in the DIXSE
repository that encompasses four default mappings (one per each DTD). Figure 6
illustrates the configuration resulting from this schema integration process.

The integrated schema includes fourteen entities. The shared entity classes (i.e.
classes whose name is used in more than one conceptual schema definition) represent
the points where integration will occur when XML documents are uploaded. In
particular, integration will occur for instances of SectionListTuple,
ArticlesTuple, Author and FullText. For example, after loading several
XML documents representing SIGMOD Record issues, the instances of the Author
entity class will be all author objects described in these documents (that is, one object
per XML element author). This would allow us to uniformly query the DIXSE

repository and, for example, retrieve at the conceptual schema level all the author
names that have written an article regardless of where the article was published (i.e.
Proceedings or Ordinary issue).

yearList year

YearListTuple XmIPCDATA XmIPCDATA
onth volume
numberList number
tolssues) XmIPCDATA
OrdinarylssucPage
month
XmIPCDATA

SectionList year
.x...lpcmm
sectionName
XmIPCDATA) (oArticle @
e L

sectionLi; articles

@m XmIPCDATA
volum XmIPCDATA endPage

Toindex

numbgr
XmIPCDATA
|1:> ProcecdingsPage
month index
XmIPCDATA 2 @
year
XmIPCDATA \ @ XmIPCDATA

conference
full Text authors,

XmIPCDATA generalTerms

location

IndexTermsPage fitle 9" XmIPCDATA
XmIPCDATA lI:> 5 > o

abstract .
CategoryAndSubject
DescriptorsTuple

SimpleClass Level

conferenceName

nceYear

categoryAndSubjectDescriptors

Fig. 6. Default Integrated Conceptual Schema

In spite of the above results, the integrated schema does not capture much of the
implied semantics of the data. First, it does not model the relationship between the
HomePage DTD and the remaining three DTDs. As shown in Figure 6 (see block
arrow number 1), the HomePage default conceptual schema is completely isolated
from the rest. Moreover, the relationships between Proceedings and Ordinary issues,
on one hand, and Proceedings and Index Terms, on the other, are only stated in terms
of the sharing of entity classes (see block arrows number 2, 3 and 4). Second, the
integrated schema does not provide information on how to uniquely identify objects
from the XML descriptions. Having the same author name in several XML documents
will not be considered as the same object. Therefore, a new Author token will be
created every time DIXSE uploads an XML document with an author element.

To overcome these deficiencies, we need to provide additional domain knowledge
through DIXSE mapping specifications. Figure 7 depicts the integrated conceptual
schema obtained after a series of improvements based on our understanding of the
semantics of the SIGMOD data (numbered block arrows indicate the entry points for
each separate conceptual schema).

The main difference between the two schemas is that the latter models the intended
interpretation and usage of the information represented by the SIGMOD Record XML
documents, and thus serves as a better guide for data integration. This is demonstrated

by the following characteristics: use of meaningful entity class and attribute names
(e.g. SigmodRecord instead of HomePage), distinction between two types of
SIGMOD Record issues and their common and specialized information (illustrated by
“isA” links in Figure 7), identification of key attributes (depicted by dashed-labeled
attributes) and explicit assertion of interschema relationships (shown as thick-labeled
attributes). As explained in Section 4, DIXSE seamlessly combines these additional
knowledge sources with the schematic information provided by the DTDs.

|I> SigmodRecord

yearlssueList

SimpleClass Level

numberlssueLi ="

N

N
voluma \nqmber tolssues_month
N
N,

XmIPCDATA

A
name \
)

authorList

authorList
@ categorySubjectList
Tolndex_index .
generalTerms
XmIPCDATA XmIPCDATA CategoryAnd

o onten Subject

sectionList
" »
Pr |

"
XmIPCDATA

subject

Fig. 7. User-customized Integrated Conceptual Schema

6 System Architecture

The DIXSE system is based on a data warehouse approach to data integration. The
storage mechanism employed is ConceptBase [8], an object base management system
that implements a version of the Telos language. The system, implemented in Java 2,
comprises two main subsystems: the Schema FEngine and the Document
Loader. The first one allows the user to register XML DTDs into the repository,
while the second one allows populating the repository with a collection of XML
documents conforming to registered DTDs.

Figure 8 depicts the system architecture and the various interactions among its
components. The Schema Engine subsystem includes five components: the DTD
parser, the XML parser, the Schema Derivator, the Schema Generator and the XSL
Wrapper Generator. On the other side, the Document Loader consists of the XSL

Processor and the Data Integrator. The communication between these two subsystems
is accomplished through the Catalog Manager and the XSL Wrapper Repository.

DIXSE System
XML DTD SCHEMA ENGINE

DTD h
o Schema ConceptBase

Generator Repository

Schema Derivator Conceptual schema Ditabage schema

XSL
‘Wrapper
Generator

I
XSL stylesheet
vy |
XSL
Wiappers Catalog
Manager

XSL stylesheet

DIXSEMapping

User Map

Integrated
Schema +
Integrated
Data

XML Documents DOCUMENT LOADER

L1

]t
A v Djtabage instance
J XSL Data
*| Processor Integrator

Fig. 8. System Architecture

We use the Xerces Java Parser and Xalan Java Processor as off-the-shelf
components [24] (i.e. the XML Parser and the XSL Processor, respectively). Although
Xerces is equipped with a DTD Parser, it doesn’t provide external access to the
grammar representation it builds. Thus, we have modified and extended the Xerces
source code to provide both individual parsing of DTDs and access to their
representations (DTD graphs).

The Schema Derivator applies a set of mapping directives to derive a conceptual
schema from a DTD graph. These directives combine the knowledge embedded in the
set of heuristic rules with any user-customized mapping information, provided in the
form of a DIXSE mapping. The output conceptual schema is then used to generate the
target schema definition and the corresponding wrapper (i.e. an XSL stylesheet),
capable of converting XML documents that comply with the DTD into instances of
the generated schema. Information about the generated database schema and wrapper
is registered into the repository catalog.

At the time of loading an XML document into the ConceptBase repository, the
loader retrieves the corresponding XSL stylesheet that will be used to transform the
input document into a database instance. At several points, the XSL Processor
interacts with the Data Integrator, which basically performs management of keys,
object identification, and IDREF/XLINK value translation. These tasks are done
using both conceptual schema and XML data information. The repository catalog is
queried and updated during this process. Finally, the ConceptBase repository is
populated with the newly created database instance.

7 Conclusions

This paper proposes a semantic framework for XML data integration. The framework,
named DIXSE, has been implemented and evaluated with a case study. DIXSE offers
a tool, which can be used semi-automatically to generate a conceptual schema from
several DTDs. The tool can then parse XML documents to populate the conceptual
schema.

Our approach differs from state-of-art data integration systems with respect to
three main aspects. Firstly, and unlike [5,16,4,22,9], DIXSE employs conceptual
modeling ideas to support data integration at a semantic level rather than at a logical
level. Based on heuristics and user input, DIXSE extracts semantic details from DTDs
to derive a conceptual schema. Secondly, the DIXSE approach is based on schema
integration ideas like many conventional data integration systems [14,25,1]. But
unlike them, DIXSE allows the user to enrich and fine-tune the default mapping
derived from a set of DTDs. Finally, DIXSE employs a specialized object-based
repository to store an integrated and semantically richer version of the data extracted
from a collection of heterogeneous XML data sources. With the help of Telos, DIXSE
provides a single framework for uniformly representing and querying conceptual
schema information (metadata) and data. The paper includes elements of a detailed
case study to illustrate the DIXSE approach.

We plan to try out DIXSE with another case study from the domain of knowledge
management to illustrate its usefulness. We also propose to use XML Schema
definitions [26] in place of DTDs, extend the implemented system so that it can
produce an XML Schema definition from the derived conceptual schema, and
generate a single XML document that integrates all the data included in the input
XML documents. We expect that these extensions will be quite straightforward.

Acknowledgements.
This research was partly funded by the Natural Sciences and Engineering Research
Council (NSERC) of Canada.

References

1. Ahmed, R., De Smedt, P., Du, W., Kent, W., Ketbachi, M., Litwin, W., Raffi, A. and
Shan, M.: The Pegasus heterogeneous multidatabase system. In IEEE Computer,
24(12):19-27 (1991)

2. Amann, B., Fundulaki, I., Scholl, M.: Mapping XML Fragments to Community Web
Ontologies. In 4" WebDB Workshop (2001)

3. Atzeni, P., Mecca, G., Merialdo, P.: To Weave the Web. In 23 VLDB Conference
(1997)

4. Baru, C., Gupta, A., Ludéscher, B., Marciano, R., Papakonstantinou, Y., Velikhov,
P., Chu, V.: XML-Based Information Mediation with MIX. In ACM SIGMOD
International Conference (1999)

5. Chawathe, S., Garcia-Molina, H., Hammer, J., Ireland, K., Papakonstantinou, Y.,
Ullman, J., Widom, J.: The TSIMMIS Project: Integration of heterogeneous
information sources. In 16™ Meeting of the IPSJ (1994)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.
25.

26.
27.

Christophides, V., Cluet, S., Siméon, J.: On Wrapping Query Languages and
Efficient XML Integration. In ACM SIGMOD International Conference (2000)
Christophides, V., Dorr, M., Fundulaki, I.: A Semantic Network Approach to Semi-
Structured Documents Repositories. In 1* ECDL Conference (1997)

ConceptBase. www-i5.informatik.rwth-aachen.de/Cbdoc (1998)

Deutsch, A., Fernandez, M., Suciu, D.: Storing Semistructured Data with STORED.
In ACM SIGMOD International Conference (1999)

Extensible =~ Markup Language (XML) 1.0, W3C Recommendation.
www.w3.org/TR/Rec-xml (2000)

Extensible Stylesheet Language (XSL) 1.0, W3C Recommendation.
www.w3.org/TR/xsl (1999)

Holsheimer, M., Siebes, A.: Data Mining: The Search for Knowledge in Databases.
Technical report CS-R9406, Amsterdam: CWI (1994)

Ives, Z., Florescu, D., Friedman, M., Levy, A., Weld, D.: An adaptive query
execution system for data integration. In ACM SIGMOD International Conference
(1999)

Larson, J., Navathe, S., El-Masri, R.: A theory for attribute equivalence and its
applications to schema integration. In IEEE Transactions on Software Engineering,
15(4):449-463 (1989)

McBrien, P., Poulovassilis, A.: A Semantic Approach to Integrating XML and
Structured Data Sources. In 13" CAiSE Conference (2001)

McHugh, J., Abiteboul, S., Goldman, R., Quass, D., Widom, J.: Lore: A database
management system for semistructured data. In ACM SIGMOD Record, 26(3):54-66
(1997)

Mylopoulos, J., Borgida, A., Jarke, M., Koubarakis, M.: Telos: Representing
Knowledge about Information Systems. In ACM Transactions on Information
Systems, 8(4):325-362 (1990)

Mylopoulos, J.: Conceptual Modeling and Telos. In P. Loucopoulos and R. Zicari,
editors, “Conceptual Modeling, Databases and Case”, pages 49-68, Wiley (1992)
Ram, S., Ramesh, V.: Schema Integration: Past, Present and Future. In A.
Emalgarmid, M. Rusinkiewicz, and A. Sheth, editors, “Management of
Heterogeneous and Autonomous Database Systems”, pages 119-155, Morgan
Kaufmann (1999)

Ramesh, V., Ram, S.: Integrity constraint integration in heterogeneous databases: An
enhanced methodology for schema integration. In Information Systems 22(8):423-
446 (1997)

Rodriguez-Gianolli, P.: Data Integration for XML based on Schematic Knowledge.
Master’s Thesis, Department of Electrical and Computer Engineering, University of
Toronto (2001)

Shanmugasundaram, J., Tufte, K., He, G., Zhang, C., DeWitt, D., Naughton, J.:
Relational Databases for Querying XML Documents: Limitations and Opportunities.
In 25" VLDB Conference (1999)

Sheth, A., Gala, S.: Attribute relationships: An impediment in automating schema
integration. In NSF Workshop in Heterogeneous Databases (1989)

The Apache Software Foundation. www.apache.org (1999)

Thieme, C., Siebes, S.: Schema integration in object-oriented databases. In 5" CAISE
Conference (1993)

XML Schema, W3C Recommendation. www.w3.org/TR/xmlschema-0 (2001)

XML version of the ACM SIGMOD Record database.
www.dia.uniroma3.it/Araneus/Sigmod (1999)

