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Abstract—Integrity constraints play an important role in data
design. However, in an operational database, they may not be
enforced for many reasons. Hence, over time, data may become
inconsistent with respect to the constraints. To manage this,
several approaches have proposed techniques to repair the data,
by finding minimal or lowest cost changes to the data that make it
consistent with the constraints. Such techniques are appropriate
for the old world where data changes, but schemas and their
constraints remain fixed. In many modern applications however,
constraints may evolve over time as application or business rules
change, as data is integrated with new data sources, or as the
underlying semantics of the data evolves. In such settings, when
an inconsistency occurs, it is no longer clear if there is an error in
the data (and the data should be repaired), or if the constraints
have evolved (and the constraints should be repaired). In this
work, we present a novel unified cost model that allows data
and constraint repairs to be compared on an equal footing. We
consider repairs over a database that is inconsistent with respect
to a set of rules, modeled as functional dependencies (FDs). FDs
are the most common type of constraint, and are known to play
an important role in maintaining data quality. We evaluate the
quality and scalability of our repair algorithms over synthetic
data and present a qualitative case study using a well-known
real dataset. The results show that our repair algorithms not
only scale well for large datasets, but are able to accurately
capture and correct inconsistencies, and accurately decide when
a data repair versus a constraint repair is best.

I. INTRODUCTION

Integrity constraints are the primary means for preserving
data integrity. Constraints represent domain specific rules and
relationships that hold over any database instance that accu-
rately reflects the domain. Typically, constraints are defined
at design time when a data architect with domain knowledge
precisely defines the semantics of the application data.

If every constraint is enforced within a database, then the
data, as it evolves, will continue to conform to the constraints.
In reality however, constraints may not be enforced (often
for performance reasons). Relaxed enforcement policies may
allow the data to become inconsistent with respect to the
constraints. To manage this, several approaches have proposed
techniques to repair the data, by finding minimal or lowest cost
changes to the data that make it consistent with the constraints
[1], [2], [3]. Such techniques are appropriate for the old world
where data changes, but schemas and their constraints remain
fixed.

In many modern applications however, constraints may
evolve over time as application or business rules change, as
data is integrated with new data sources, or as the underlying
semantics of the data evolves. In such settings, when an

inconsistency occurs, it is no longer clear if there is an error in
the data (and the data should be repaired), or if the constraints
have evolved (and the constraints should be repaired). More
precisely, if the data values are incorrect, then the data values
should be corrected. If the constraints are incorrect, then
they should be corrected to accurately (but concisely) model
the data. Although constraint discovery techniques can be
applied, they are well-known to find ”accidental” constraints,
i.e., constraints that happen to hold over an instance, but
not application constraints that hold over time. In addition,
constraint discovery techniques [4], [5], [6] are expensive to
compute and they do not consider in their search the existing
set of constraints. Hence, they may discover a new and very
different set of constraints. We propose an alternative approach
that considers both data and the existing constraints in the
repair process. Hence, discovered constraints are modifications
of known constraints that have already been validated as
application constraints. For both constraint and data repairs,
we will want to make the lowest cost change possible to bring
the data and constraints back into a consistent state.

Sources of data errors are well-known (careless data entry
practices, unnormalized data containing redundancies, integra-
tion of data sources, etc. [7]). Sources of constraint errors
include evolution of domain or application requirements and
of course integration as well. For example, each university
department may maintain its own courses. If the university
decides to consolidate all courses to a central table, ambigu-
ities among department courses can arise. That is, Classical
Studies (CS 2400) vs. Computer Science (CS 2400) will be
difficult to decipher without a distinguishing attribute such as
the originating DEPT. Constraints such as F : [CourseID]
→ [ROOM, DAY, TIME] may no longer hold over the
integrated table. A possible constraint repair would be to add
DEPT to F ’s antecedent to resolve the inconsistency. Notice
that if we only consider data repairs, we would have to modify
all courses with the same CourseID which may not be the
desired semantics. If we consider only constraint discovery [4],
[8], we might find numerous extraneous constraints such as E :
[ROOM,DAY,TIME,TEXT] → [CourseID], a rule that
may hold simply because of the large domains of attributes
like TEXT, but does not reflect any application constraint.
Constraints may also be violated if they are unable to handle
correct but exceptional cases, if they are not updated as
data and policies evolve, or if there is poor management
of the constraints. The Belgian social security agency [9],
which handles social security contributions from employers



TABLE I: Example table

tid District Region Municipal AreaCode PhNo Street Zip City State
t1 Brookside Granville Glendale 613 974-2345 Boxwood 10211 NY NY
t2 Brookside Granville Glendale 613 974-2345 Boxwood 10211 NY NY
t3 Brookside Granville Glendale 613 299-1010 Westlane 10211 NY MA
t4 Brookside Granville Guildwood 515 220-1200 Squire 02215 Boston MA
t5 Brookside Granville Guildwood 515 220-1200 Squire 02215 Boston MA
t6 Alexandria Moore Park NapaHill 415 220-1200 Napa 60415 Chicago IL
t7 Alexandria Moore Park NapaHill 415 930-2525 Main 60415 Chicago IL
t8 Alexandria Moore Park NapaHill 415 555-1234 Tower 60415 Chester IL
t9 Alexandria Moore Park QueenAnne 517 888-5152 Main 60415 Chicago IL
t10 Alexandria Moore Park QueenAnne 517 888-5152 Main 60601 Chicago IL
t11 Alexandria Moore Park QueenAnne 517 888-5152 Bay 60601 Chicago IL

and workers, faced similar issues in trying to distribute ben-
efits. For example, workers may work both weekdays and
weekends leading to a higher number of days worked than
the constraints allowed, and changes to the contribution rates
were not reflected in the constraints due to costly updates.

Consider the following example that illustrates the power
of considering both data and constraints in the repair process.

Example 1.1: Consider Table I and the constraints:
F1: [District, Region] → [AreaCode]
The table violates this constraint. We could repair the viola-
tions by changing the data, but we would have to change either
t1 − t3 or t4 − t5 and either t6 − t8 or t9 − t11. There is no
evidence in the data to tell us which tuples would be “better” to
change, but more importantly, we would be changing tuples
that all have the exact same error. So perhaps it is not the
data that is inconsistent, but the constraint. Further evidence
supporting this conclusion is that the tuples in disagreement,
can be distinguished by their Municipality. Hence, it may be
that the context in which this constraint applies has changed.
We can repair this inconsistency by adding Municipal to
the antecedent to make F1 consistent.
F2: [Zip] → [City, State]
Tuples t1 − t3 do not satisfy F2, and t8 is in conflict with
t6, t7, t9. Based on the data, it appears that the City value
of Chester in t8 may be incorrect (since t6, t7, t9 are all in
agreement). Similarly, we may conclude it is more likely that
the State of t3 is incorrect (MA should be NY).
F3: [PhNo, Zip] → [Street]
Tuples t10, t11 do not satisfy F3 and we can consider updating
the Street value of either tuple to remove the violation.
However, it is not clear what the correct value should be
(Bay or Main). There is more support for Main in the data,
but Main always appears with the Zip 60415, except in
tuple t10. Hence, based on the data, there is more evidence to
indicate that the Zip of tuple t10 may actually be incorrect,
rather than its Street.

In the example, we have justified intuitively a case where
a constraint repair seems better than a data repair, and a case
where one data repair seems better than another. In this paper,
we present a new cost model that reflects this intuition and
allows us to quantify the trade off between different constraint
repairs and different data repairs that may be possible.

In this work, we focus on functional dependencies (FDs),
as such constraints are a primary tool used to enforce data
consistency in practice and are known to be very important
in improving data quality [10], [2]. Changes in the domain
semantics will necessitate changes to these rules. Towards a
goal of improving long term data quality, we focus on rules
that have sufficient evidence in the data. That is, we are
interested in repairing rules that will continue to hold over
time, and that are well supported in the data. We formalize
the notion of evidence (support) by measuring the amount
of data redundancy that exists with respect to the rule. For
well-supported rules, we have a hope of automating the
repair process and determining with reasonable accuracy good
repairs. In contrast, we do not consider low support rules, such
as keys, as there may be little evidence in the data to determine
which attribute (the key value itself or a descriptive attribute)
should be repaired. Such rules are already well studied in the
duplicate detection and identification literature where other
techniques, including clustering, are most useful.

Problem Statement: Given a set of functional dependencies
Σ, that are inconsistent with respect to a database instance I ,
find a set of low cost data repairs and a repair of Σ that will
create an I ′ and concise Σ′ that are consistent.

Contributions:
• A new cost model for data and constraint repairs over a
database that is inconsistent with respect to a set of constraints.
• A data repair algorithm that searches for data modifications
such that the constraints hold and the repair cost is minimal.
For a functional dependency F : X → Y and tuples t1, t2
that violate F , we can repair these tuples by either modifying
their Y values to be the same, or by modifying their X values
to be different. In both cases, we require that the data support
the change. In particular, when modifying X values, we only
consider values for X that are supported by other tuples.
• A constraint repair algorithm that determines which attribute
to add to a constraint to resolve the inconsistency. We select
attributes for the repair using an adapted notion of the variance
of information between the new attribute and the inconsistent
FD that quantifies how well an attribute repairs the inconsis-
tency without lowering the redundancy in the constraint.
• We evaluate our repair algorithms separately (as stand-alone
algorithms). We do this because in some cases we may have a



carefully curated set of constraints that we trust and we may
choose to only make data repairs. Alternatively, we may have
a data set that cannot be updated (due to security reasons, or
to ensure compliance with business regulations), so we may
choose to only make constraint repairs. Hence, we present an
evaluation to show the accuracy and performance of our data
repair and our constraint repair algorithms individually.
• We conduct a case study using the Cora bibliographic
dataset to evaluate our cost model and the quality of the
recommended repairs. We show that our model can effectively
determine when a data vs. constraint repair is best, and that
our algorithms recommend repairs that help to improve the
quality of the data.

II. PRELIMINARIES

We begin by formally defining the constraints, constraint
violations, and repairs that we will consider.

For an instance (relation) I over a set of attributes R, N =
|I| denotes the cardinality (number of tuples) of I and |R|
denotes the arity (number of attributes). For attribute sets X
and Y , we will follow convention and use XY to denote the
union of X and Y .

A functional dependency (FD) F over a relation R is
represented by F : X → Y , where X,Y are attribute sets
in R. We will denote the attributes of F by F = XY . We
will use the shorthand |F| to denote |XY |. An instance I of
R satisfies F (written as I � F ) if for every pair of tuples
t1, t2 in I , if t1[X] = t2[X] then t1[Y ] = t2[Y ]. An instance
I is inconsistent with respect to (wrt) F (or Σ) if it violates
F (or any of the FDs in Σ). Without loss of generality, we
assume all FDs F : X → Y have been decomposed so Y
contains a single attribute.

A. Data Repairs

Suppose we have tuples t1 and t2 that violate an FD F :
X → Y , so t1 and t2 agree on X (t1[X] = t2[X]) and disagree
on Y (t1[Y ] ̸= t2[Y ]). To repair such a violation, we can
change some attribute values in either of the following ways
(without loss of generality, we assume t2 is changed).
Type 1 Repair the Y values to be the same.
Here, we would change t2[Y ] to equal t1[Y ]. We will do this
when there is sufficient evidence in the data to conclude the
t1[Y ] is the correct value to associate with t1[X].
Type 2 Change the X values to be different.
Here, we would change t2[X] to be different from t1[X].
Obviously, we would not pick an arbitrary X value. Instead,
we will look for evidence in the data that one or more of
the attribute values in X is incorrect by finding a tuple t3
where t3[Y ] = t2[Y ] and t3[X] is close to t2[X] (where we
will define a precise notion of closeness). If t3[X] appears
frequently in the data, then we will consider changing t2[X] to
t3[X]. In other words, we have t2[X] ̸= t3[X] but these values
are similar, and t2[Y ] = t3[Y ] where there is a lot of evidence
supporting t3[X]. Hence, we change t2’s X values to match
t3. We impose no preference on the type of repair selected,
unlike previous work that focused on data repairs only on Y

(Type 1) [1]. Rather than such an a priori preference, we will
present a cost model for data repairs and use this as the basis
for selecting repairs.

B. Constraint Repairs

In addition to the above two types of data repairs, we
consider repairing violated FDs. In this work, we consider one
type of constraint repair for an FD F : X → Y : the addition of
an attribute to X . The additional attribute provides additional
context for defining when the rule actually holds. Such a repair
is necessitated frequently when integrating data, or as legacy
relations evolve to be used for new types of information.

In considering a constraint repair, we will also evaluate
whether there is a cheap way to repair the data to resolve
the inconsistency. This may be the case if only a few tuples
violate the constraint and these tuples are close to other well-
supported values in the relation. However, if many tuples
violate the constraint and there is an attribute whose values
neatly separate the conflicting tuples (as was the case in
Example 1.1, for constraint F1), then clearly a constraint
repair should be considered. However, the trade-offs can be
subtle between constraint and data repair. If there are only
a few violators, it still may be the case that a constraint
repair is in order, especially if no low-cost data repairs can
be found. Notably, previous work on repairing inconsistency
only considered data, not constraint repairs [1], [2], [3]. An
alternative approach assumes that a schema mapping is given
between an old (source) and new (target) schema and infers
a set of target dependencies that are logically implied by the
source constraints and the mapping [11]. This is called con-
straint propagation and it assumes that the constraints have not
evolved or changed, they are simply being updated to reflect
a new schema. Such dependency propagation (inference) is
complementary, but orthogonal, to our approach. Notably, we
do not assume the schema has changed or that any well-design
and correct schema mapping is given.

III. A UNIFIED REPAIR MODEL

One of the contributions of our work is a new cost model
that quantifies the trade-off of when an inconsistency is a true
data error (warranting a data repair) vs. an update to the model
(justifying a constraint repair). Our goal is to find a set of
minimal repairs to either I or Σ such that the updated I ′, Σ′ are
consistent, i.e., I ′ � Σ′. We present a cost model that evaluates
the cost of potential data repairs and constraint repairs, and
selects repairs with lowest cost. Our cost model is based on
the following properties.

• Accuracy: We consider updates to a data value vs that
will transform it to a target value vt with frequency fvt .
Let θ be a given support threshold. To measure accuracy,
we use a distance measure r = dist(vs, vt) between
values, and seek updates that minimize r, and where
fvt ≥ θ such that there is sufficient support in the relation
for this change.

• Redundancy: Let F : X → Y be a constraint that holds
over I (even approximately). Let |I |= F | be the size of



the largest subset of I that satisfies F . We seek repairs
for inconsistent data values x ∈ X, y ∈ Y to x′, y′ such
that |σX=x′,Y=y′(I)| has sufficient support. For constraint
repairs, we seek attributes A ∈ R, such that |I |= F ′| >
|I |= F | for F ′ : (X ∪ A) → Y (that is, after adding A
to F there are more tuples satisfying the FD).

• Conciseness: Our repaired constraints should explain as
much of the data as possible, but without overfitting.
That is, large constraints (with many attributes in the
antecedent) may explain the data precisely but with a high
representation cost. Conversely, constraints with fewer
attributes may not be as precise. Our goal is to find repairs
leading to concise constraints that maximizes |I |= F ′|.

A. Minimum Description Length Principle

To explain our framework, we begin by assuming there is
a single FD F : X → Y over a relation I , and we seek to
build a model M for F . (We consider multiple FDs later.)
The better F is at encoding a set of values, the smaller its
description length (DL) will be. The Minimum Description
Length (MDL) principle [12], [13] defines DL for M as the
length of the model L(M), plus the length to encode the
data values in a relation I given the model L(I|M). We seek
accurate repairs to I , and repairs leading to concise F (hence
small L(M)) that capture as much redundancy in the data as
possible (hence minimizing L(I|M)).

Assume that I |= F and that we start with a model M = ∅.
Then L(M) = 0, but to describe the data, we need L(I|M) =
|XY | ∗ |I| “cells” (given a tuple, we refer to an attribute value
as a cell, and we will use cells as the unit for our DL). Now
suppose there is a tuple s ∈ ΠXY (I) that appears frequently
in I . If the single tuple s is added to M , then this precisely
describes the Y value associated with this X value. Suppose
s appears f times in ΠXY (I). Then, if we add s (a single
tuple with |XY | cells) to M yielding a new model M ′, we
can reduce L(I|M) by f ∗ |XY |. Hence, (L(M ′) +L(I|M ′)
= |XY |+ (|I| − f ∗ |XY |)) < L(M) +L(I|M), so we have
produced a model M ′ with a lower description length. Of
course this simple idea is made more complicated when I ̸|=
F . In general, we will try to find repairs for erroneous tuples
in I , that allow us to find a concise model for the repaired
instance I ′. Alternatively, we will try to repair F so that we
can find a concise model for F ′.

Assume we begin with an empty model M . We add to M
tuples from ΠXY (I) that have high support, and that do not
conflict with tuples in M wrt F .

Defn 3.1: A tuple pattern p is a single tuple over XY that
exists in ΠXY (I). The frequency of p, fp, is the number of
times p occurs in I .

Defn 3.2: A model M is a set of signatures where each
signature s ∈ ΠXY (I) is a tuple pattern.

For example, in Table I, we can consider ’60415 Chicago IL’
as a signature since it is a frequently occurring tuple pattern.
Our goal will be to find signatures that lower the overall DL
cost (via L(I|M), by summarizing frequently occurring tuple
patterns in I). For a constraint F , we build a model M by

adding signatures to represent as much of the data I as possible
wrt F . (That is, we do not add tuples to M that together
with M would violate F .) Hence, we seek signatures that
capture as much regularity (redundancy) as possible in I . The
length of the model L(M) plus the length to encode I given
M , L(I|M), should be as small as possible. We can consider
general models where L(M) is very small, and L(I|M) is
very large because M will accept almost any data value, and
we must explicitly write out the values in I . On the other
end, we can consider very specific models where M models
almost the exact values in I and hence L(I|M) is close to
zero. We seek an M between the general and specific models
that minimizes the description length DL = L(M)+L(I|M).
In our model, we use a unit cost for each cell in a relation.
Specifically, we compute the description length as

L(M) = |XY | ∗ S, and L(I|M) = |XY | ∗ E
where S is the number of signatures s in M . E is the

number of tuples in I not represented by an s in M . Hence,
L(I|M) is the length of encoding these tuples if we leave the
data as is and we do not repair the data.

IV. DATA REPAIR

To begin, assume we have a single FD F : X → Y . We
will start with an empty model M . Hence, L(M) = 0 and
L(I|M) = |XY |∗N the cost to represent all tuples in I wrt F .
As we add signatures to M (that do not conflict with existing
s in M ), our goal will be to minimize L(M)+L(I|M). Each
new signature increases L(M) but also decreases L(I|M). If
there are tuple patterns that occur frequently, then replacing
them with a signature in M should reduce L(I|M) and only
slightly increase L(M), resulting in an overall lower DL.

A. Tuple Patterns: Cores and Deviants

To compare potential data repairs, we assume for each
attribute A ∈ R, a distance function 0 ≤ distA(v1, v2) ≤ 1
over values in the domain of A. Here, distA(v, v) = 0.
For different values, distA(v1, v2) indicates how different
the values are. The distance functions can be a simple 0
or 1 function where 0 indicates the values are the same,
and 1 indicates they are different. Alternatively, we can use
distance functions tailored to the domain (for example, in our
experiments, we use the Jaro-Winkler measure for strings [14],
see Section VII).

For tuple patterns, we assume the existence of a similarity
measure between tuple patterns 0 ≤ sim(p1, p2) ≤ 1 where
sim(p, p) = 1. This similarity function may be a weighted
sum of the attribute distance, or an aggregate over the attribute
distance. For our work, we define sim as the fraction of equal
attributes in the patterns.

σA(p1, p2) =

{
1 if distA(v1, v2) = 0

0 else

sim(p1, p2) =

∑
A∈XY σA(p1, p2)

|XY |
To guide our algorithm, we will use a support threshold θ

and a pattern similarity threshold β. Intuitively, tuple patterns



with a frequency over θ ∗ N will not be considered as
candidates for a data repair. Furthermore, a candidate for a
data repair must be at least as similar to some other pattern as
our threshold β. Our similarity function is appropriate when
data errors in different attributes are introduced independently.
If this is not the case, a different similarity function could be
used. Specific data cleaning requirements will often determine
appropriate values for β. For example, if data errors are rare,
we will want to use a higher threshold β. Based on this, we
define core tuple patterns and deviations.

Defn 4.1: A core (tuple) pattern p ∈ ΠXY (I) is any tuple
pattern with freq(p) ≥ (θ ∗N).

Defn 4.2: A deviant (tuple) pattern d ∈ ΠXY (I) is a tuple
pattern with freq(d) < (θ ∗ N) such that there exists at least
one core pattern c such that sim(d, c) ≥ β.

In developing M , we initially consider all core patterns as
signatures (if there are two conflicting core patterns, we select
the pattern with higher support). As a simple example, if θ∗N
is 3, then for a core pattern we save (2 ∗ |XY |) since the cost
to represent the signature is |XY | and we are removing three
tuples (that otherwise would be encoded in L(I|M)). Deviants
are candidates for repair. In our algorithm, we compare the
cost of different data repairs. We do this in two ways. The
first is by using the similarity functions on attributes (simA).
Second, we evaluate the potential impact of the data repair on
other constraints, an issue we consider in the next section.

Example 4.3: Consider Table I and the FD F2. Let θ =
0.18. The core patterns are given below.
• p1: ’10211 NY NY’ • p3: ’60415 Chicago IL’
• p2: ’02215 Boston MA’ • p4: ’60601 Chicago IL’
Let β = 0.66, a deviant must have at least two attribute

values in common with a core pattern. The deviants are:
• d1: ’10211 NY MA’ • d2: ’60415 Chester IL’
Notice that d1 is a deviant of p1, while d2 is a deviant of p3.

If we lower β = 0.33, then d1 is a deviant of p1 and p2, and d2
would be a deviant of p3 and p4. Selecting a lower β clearly
leads to greater evaluation costs as there are more options to
consider for a data repair. Furthermore, as this example shows,
a β that is too low may lead to undesirable repairs.

B. Handling Multiple Constraints

Constraints that share common attributes have the potential
to contain overlapping data inconsistencies. If a data repair
updates a value vs to vt when considering an FD Fi, this
update may also impact Fj . We would like to be able to
detect these shared interactions such that when we consider
the repair wrt Fi, we are aware of whether (and how) this
update will impact Fj . Specifically, we compute the increase to
L(MFi), to add the signature s to MFi , the potential reduction
to L(I|MFi), the cost to transform vs to vt, and the change to
the description length ∆DLFj wrt Fj due to this update. We
check whether implementing this update creates a new core
pattern that could be added as a signature for the model MFj

and lowers L(I|MFj ), thereby decreasing the overall DLFj .
Alternatively, the update may create a new deviant and remove

a potential core pattern for Fj . Hence, we consider the change
∆DLFj . For the data repair cost, we consider updating each
vs in d to the corresponding vt in p. The cost of the data
repair is (1+r), where r = distA(vs, vt). For our case, distA
is the Jaro-Winkler distance if vs and vt are strings, and the
normalized Euclidean distance if the values are numeric. We
assume r ∈ [0, 1], with 0 indicating exact similarity and 1
indicating no similarity. The leading 1 is the unit cost for
updating a cell value. We evaluate (recursively) the impact of
this data repair on affected constraints.

While our data repair algorithm is in similar spirit to previ-
ous techniques [1], [2], our distinct look ahead mechanism is
useful in recognizing which data repairs have added benefits
of resolving future inconsistencies. Alternatively, a current
data repair may not be selected because it negatively reduces
the amount of redundancy captured by other constraints. We
note that to avoid a non-terminating cascade of updates, our
algorithms are greedy and do not undo updates that have
already been done. When the DL can no longer be improved
via data repairs, the learning process terminates and we return
the current model M as the best model (along with the
associated data repair costs), which will be compared against
the constraint repair model costs. Further details are given in
Algorithm 1.

Example 4.4: We show a simple example of how a model
M is found and how L(M) and L(I|M) are computed for
F2 : [Zip] → [City, State]. Consider only the first five tuples
in Table I, so I = {t1, t2, t3, t4, t5}. Let θ = 0.4, and β =
0.66, then we have:

• p1 = ’10211 NY NY’
• p2 = ’02215 Boston MA’
• d = ’10211 NY MA’, vs = ’MA’ in t3 State
If θ = 0.2, we identify ’10211 NY MA’ as a core pattern,

however, it would not be used since adding this pattern to
M would not lower the DL cost. The learning proceeds as
follows:
• Initialize M to contain p1 and p2 as signatures. Since each
core pattern has a representation cost of 3, we get L(M) = 6.
There are (3 * 5) cells to represent I wrt F2, and initially
L(I|M) = 15. After adding the signatures, we reduce L(I|M)
by 12 since we save (fp ∗ |XY |) for each core pattern, thus
DL = 9.
• Adding d to M will not reduce the DL cost. We consider
two possible data repairs, based on the value of β:

1) If β = 0.66, then d is a deviant of p1. We update t3
’MA’ to ’NY’. diststate(

′MA′,′ NY ′) = 1, then the
repair cost is 2.

2) If β = 0.33, then d is a deviant of p1 and p2, and
there are two possible data repairs. We can update
t3 as described above (r1 = 2). Alternatively, we
could update d to p2, which requires updating ’10211’
to ’02215’, and ’NY’ to ’Boston’. The cost of this
repair would be r2 = (1 + distzip(’10211’,’02215’))
+ (1 + distcity(’NY’,’Boston’)) = (1+0.267) + (1+1) =
3.26. Since r1 < r2, we choose the first repair.



We evaluate the impact of this repair on the DL. By
leveraging the signature ’10211 NY NY’ in M , we decrease
L(I|M) by 3. However, we need to add the repair cost to the
model, so DL′ = L(M)+r1+L(I|M) = 6+2+(3−3) = 8.

V. CONSTRAINT REPAIR

In Example 1.1, F1 is inconsistent with the given relation
I . All the tuple values are relatively evenly distributed and
there is no consequent value that is clearly erroneous, and
hence no obvious data repair. Some inconsistencies such as
this reveal that the constraints themselves may be outdated
and need to be repaired. If we consider adding the attribute
Municipal to F1’s antecedent, this will make the new F ′

1

consistent with I . Furthermore, the original DLF1 cost is 33
(that is, if M = ∅). None of the core patterns for F1 satisfy
the constraint, so we cannot add all of them to the model
without doing data repairs. For this example, and in general,
such repairs may be expensive. An alternative that we consider
is to modify F1 by adding Municipal. This constraint repair
allows us to add 4 signatures to the model (albeit longer
signatures each of length four) that are consistent with the
new constraint giving a new DL′

F ′
1
= 16. In this section,

we discuss how we evaluate candidate attributes for constraint
repair. Due to space limitations, we consider only repairs that
create a new FD by adding an attribute A to X , such that I
is (more) consistent with respect to the new F ′, rather than
repairs that add a condition to create a conditional functional
dependency (CFD). Our algorithm can be extended to search
for (conditional) constant values by applying techniques from
CFD discovery algorithms [10].

A. Attribute Partitionings

We first describe how each candidate attribute A is evaluated
when it is being considered as a possible addition to X to
repair a constraint. We want to find an A that has the most
similar distribution of values with Y on inconsistent tuples.
For F1, the Municipal attribute has the same distribution of
values as AreaCode in tuples (t1, t2, t3), (t4, t5), (t6, t7, t8),
and (t9, t10, t11) where the inconsistencies were found. If A
contains different values in consistent (non-violating) tuples,
our model for F ′ : A∪X → Y becomes larger at the expense
of a loss in redundancy and so the addition of A may be
undesirable. We need to compare how the values in X,Y
compare with values in A. We do this by modeling the attribute
values as classes.

Let CX be a partitioning where each class in the partitioning
contains all tuples that share the same X value. Let CXY be
a refinement of CX containing a class for each set of tuples
that share the same X and Y values. The partitioning CXY

ranges over the possible XY values, and two CXY classes
will differ in either X or Y . A class in CX may contain tuples
from multiple CXY classes, and if this occurs, these are tuples
involved in a violation of F .

Example 5.1: The partitionings for F1 − F3 of Example
1.1 are given below. Again, we use Fi as a shorthand for
the attributes in Fi, that is XiYi. For each class of XiYi,

we divide the tuples of the classes based on their Xi classes
(so each class of CXi is shown within braces {...}). Since
the partitioning for XiYi are a refinement of the classes for
Xi, we show the partitioning for XiYi where each CXY is
in parentheses (...). Hence, we show the partitionings for Xi

and XiYi in the same line. The partitioning for attribute A =
Municipal is also given.

• CF1 : {(1,2,3) (4,5)} {(6,7,8) (9,10,11)}
• CF2 : {(1,2) (3)} {4,5} {(6,7,9) (8)} {10, 11}
• CF3 : {(1,2)}{(3)}{(4,5)}{(6)}{(7)}{(8)}{(9)}{(10)(11)}
• CA: {1,2,3} {4,5} {6,7,8} {9,10,11}

B. Variance of Information
To understand if we should add an attribute A or an attribute

B to F , we can use some ideas from clustering, specifically
techniques for evaluating different clusterings. Suppose we
view CF as a “ground truth” clustering. For a new attribute
A, we would like to understand how well CA matches CF.
However, there is one caveat. The classes CXY indicate that
each class should map to a distinct class in CA. However, for
our purposes two classes in CXY from distinct CX may map
to the same class in CA. We present a modified version of a
clustering evaluation measure that evaluates the suitability of
a candidate attribute.

We first present some terminology. Assume we have taken
our data set I and divided it into a set of classes CXY . So the
number of classes is C = |CXY | and each class is denoted by
cxy . Furthermore, let us assume that this classification (which
is based on F ) constitutes our ground truth classification of
I . We will consider new clusterings of I into a new set of
K clusters. The clustering we will consider are groupings of
tuples by a new attribute A. Hence, K = |CA| classes each
represented by ca, where a ranges over the possible values
of A. In a homogeneous clustering, every ca only contains
elements from a cxy (intuitively, the value a corresponds only
to the values x, y, but there may be an a′ ̸= a that also
corresponds to x, y). In a complete clustering, all elements
of cxy are assigned to the same ca (intuitively, the values x, y
only correspond to the value a). Assuming that the elements
in the data set are drawn from a uniform distribution, we can
define the conditional entropies of these clusterings

• H(C|K) = −
∑

xy

∑
a p(cxy, ca) log p(cxy|ca)

• H(K|C) = −
∑

a

∑
xy p(cxy, ca) log p(ca|cxy)

where p(cxy, ca) =
|(cxy∩ca)|

N , and p(cxy|ca) =
p(cxy∩ca)

p(ca)
.

The summation is taken over all values of ΠXY (I) (respec-
tively, ΠA(I)). For homogeneity, each ca must be contained
in a cxy , hence minimizing H(C|K) towards zero. Similarly,
for a clustering to be complete, each cxy must be contained
in a particular ca, minimizing H(K|C). The Variance of
Information (VI) measure [15] is defined as

V I(C,K) = H(C|K) +H(K|C)
In the least homogeneous (or complete) clustering, the value

of H(C|K) (or H(K|C)) is maximal. Hence, lower VI values
are preferable, with the perfect homogeneous, complete solu-
tion having VI = 0. The value of VI ranges from [0, 2 logN ].



C. Comparing Attributes

For constraint repair, we would like CA to be a homogeneous
clustering with respect to a “ground truth” classification CXY .
That is, ideally, we do not want any class in CA to contain
values from multiple cxy belonging to the same CX . Other-
wise, attribute A has not helped to separate (correct) these
inconsistent tuple values, and we cannot encode these values
in our model. If CA is incomplete, we encode all the tuple
values for a given cxy with additional signatures (one for
each ca that contains cxy tuples). A clustering CA may be
heterogeneous with respect to CX since a single value of A
may map to multiple classes in CXY without violating the
FD F . To capture this, we compute a modified version of
homogeneity, H(C|KX).

This is similar to H(C|K) but instead of considering all
the tuples in ca, we compute the homogeneity of ca wrt each
class of X (CX ) rather than XY . That is, we exclude from the
computation all tuples in ca that do not share the same value
of X . We compute completeness H(K|C) of each class ca,
for every a ∈ A. Our objective is to find attributes whose value
distributions coincide with tuples that require repair. We select
the attribute A with the lowest homogeneity score (contains
the largest number of values that can be encoded). In cases of
a tie, we select the A with the lower completeness score. An
example calculation is given next.

Example 5.2: We show how H(C|KX) and H(K|C) are
calculated for each candidate attribute to repair an incon-
sistent FD. Consider F1 : [District, Region] →
[AreaCode], and the following attributes A:
• CF1 : {(1,2,3) (4,5)} {(6,7,8) (9,10,11)}
• CA1=Municipal: (1,2,3) (4,5) (6,7,8) (9,10,11)
• CA2=Street: (1,2) (3) (4,5) (6) (7,9,10) (8) (11)
• CA3=State: (1,2) (3,4,5) (6,7,8,9,10,11)
• CA4=PhNo: (1,2) (3) (4,5,6) (7) (8) (9,10,11)
• HA1(K|C) = HA1(C|KX) = 0. Each of the ca classes

is complete and homogeneous.
• HA2(C|KX) = ( 1

11 log
1
3 ) + ( 2

11 log
2
3 ) = 0.075,

HA2(K|C) = (2 ∗ ( 2
11 log

2
3 ) + (5 ∗ ( 1

11 log
1
3 ))) = 0.281.

Class (7,9,10) contains heterogeneous terms since all the
tuples belong to the same CX .

• HA3(C|KX) = 0.239, HA3(K|C) = 0.075 and
HA4(C|KX) = 0, HA4(K|C) = 0.205. CA4 classes
(3),(7),(8),(1,2), and (4,5,6) are incomplete. The cluster-
ing is homogeneous even though class (4,5,6) contains
tuples from different cxy, they are from distinct CX .

The homogeneity scores show that Municipal is the best
attribute to repair F1, followed by PhNo, Street and then
State. The DL values of the revised F ′

1 with each of the
attributes are DLA1 = 16, DLA2 = 36, DLA3 = 40, DLA4 =
24, and reinforces homogeneity as the correct measure.

VI. MDL REPAIR ALGORITHM

We have presented algorithms for repairing data that is
inconsistent with a constraint, and for repairing a constraint.

We now take these pieces and put them together in an MDL
Repair Algorithm. Specifically, given a set of constraints F
and a database I that is inconsistent with F , our algorithm
will select a set of low cost data and constraint repairs
that produce an F ′ and I ′ such that I ′ |= F ′. We first
review the relationship between the repair costs and the model
description length, followed by a discussion on the order in
which constraints should be considered, and finally we present
the algorithm.

A. Cost Model Review

For F : X → Y , DLF = L(M)+L(I|M) where L(M) =
(S ∗ |XY |) + rT , S is the number of signatures in the model
M , and rT is the total data repair cost for updated tuples
in I . Then L(I|M) = E ∗ |XY | where E is the number of
tuples not modeled by the S signatures in M . At each step,
our greedy algorithm selects the data or constraint repair that
reduces DL the most. If a data repair is selected, we add the
smallest update cost (1+r) (remember r = dist(vs, vt) for a
source value vs and a target value vt) to rT such that the
repaired tuple(s) match an existing signature in M . Then we
reduce L(I|M) = (E − tc) ∗ |XY |, where tc are the number
of new consistent (repaired) tuples.

For constraint repair, we consider a new FD F ′ : (X ∪
A) → Y where |I |= F ′| > |I |= F | (there are more tuples
satisfying F ′ than F ). We choose the constraint repair F ′ only
if DLF ′ = S′∗(|XY |+1)+E′∗(|XY |+1) is less than DLF ,
where S′ is the number of signatures in the model wrt F ′, and
E′ is the number of tuples not modeled by the S′ signatures.
As mentioned in Section V-C, we select an attribute A such
that CA is homogeneous in CXY (and most complete in cases
of a tie). If the clustering is not homogeneous, then A has not
helped to separate these conflicting tuple values, and since
they cannot be represented by a signature, they will remain
inconsistent and do not contribute towards reducing DL.

B. Ordering Constraints

When a relation I is inconsistent with multiple constraints,
our algorithms must choose an order for processing the
constraints. We consider two criteria for ordering constraints.
First, we consider the degree of inconsistency of each F :
X → Y . An x value is inconsistent if it appears in I with
more than one y value. The degree of inconsistency for x is
the number of y values such that xy ∈ I . For an FD F , we
can then define the degree of inconsistency.

Defn 6.1: The degree of inconsistency (icF ) of F with I
is:

icF =

∑
x∈ΠX(I)(|ΠY (σX=x(I))| − 1)

|ΠXY (I)|

If I is consistent, icF = 0. The closer icF is to 1, the more
inconsistent the relation is wrt F .

The second criteria we consider are the potential conflicts
F shares with other inconsistent constraints F ′, defined based
on the number of attributes they have in common (|F ∩ F′|).



Defn 6.2: The conflict score of an FD F with a set of FDs
F is (recall F denotes the attributes in F ):

cfF =

∑
F ′∈F

|F∩F′|
max(|F|,|F′|)

|F|
The conflict score cfF ∈ [0, 1], with 0 indicating no

overlap and 1 indicating that all the attributes overlap (with all
other FDs). Constraints with high cf values have the greatest
potential of repair conflicts with other rules. Since both our
evaluation scores are normalized, we average the two values
to get a combined score OF ,

OF = icF+cfF
2

We evaluate multiple constraints in decreasing OF order,
since large values indicate rules with the highest degree of
inconsistency and the greatest potential of repair conflicts with
other constraints. Note that this is a heuristic meant to improve
the efficiency of the repair process by doing the heavier work
upfront, and minimizing the amount of conflicts later on.

C. Repair Algorithm

Our repair algorithm consists of a main driver routine to
COMPUTE REPAIRS that compares the cost of data and
constraint repairs, picking the repair of lower cost. For each
inconsistent F , we compute the core patterns p, deviants d, and
the icF , cfF values. We select an F from priority queue L (in
decreasing OF order), and search for the data and constraint
repairs. For the former (FIND DATA REPAIRS), given an F ,
then for each deviant d of F , we determine the lowest cost
repair for d over all p for which it is a deviant. If the data repair
impacts other constraints, then this impact cost is calculated
and added to costd. If the new model M ′ (that includes the
data update) results in a decrease to the description length DL,
then we include this update in our recommended list of data
repairs for F . The cost of the update is added to the cumulative
repair cost for F . To search for constraint repairs for F (FIND
CONSTRAINT REPAIRS), we compute the homogeneity and
completeness score of each attribute not in F . The attribute
with the lowest homogeneity score is the winning attribute
(if there is a tie, the attribute with the lowest completeness
score is used), and a constraint repair is recommended if
costconstr (with the winning attribute) is less than costdata.
After applying the repairs to I and Σ, I ′ |= Σ′. Pseudocode
is given in Algorithms 1 and 2.

VII. EXPERIMENTAL EVALUATION

We conducted a qualitative and performance evaluation of
our repair algorithms using both real and synthetic datasets.
Our experiments were run using a Dual Core AMD Opteron
Processor 270 (2GHz) with 6GB of memory. We used the
TPC-H dbgen data generator (PART table) for the performance
and first set of quality tests, the Veterans of America [16] real
dataset for our comparative study, and the CORA bibliographic
real dataset for our case study [17]. To evaluate string similar-
ity in data repairs, we used the Jaro-Winkler distance measure
[14], and the normalized Euclidean distance for numeric data.
In the case study, as real data often contains empty (NULL)

Algorithm 1 Data repair algorithm
COMPUTE REPAIRS ()
INPUT: |Σ|: number of constraints defined over I
bConstraintRepair: flag to search for constraint repairs
evalConstraints[]: list of already evaluated constraints

1: setup structure FList that maintains info on each F
2: read data values(): read tuples from I
3: for F in |Σ| do
4: compute core deviant patterns(F ): get p and d wrt F
5: initialize model(F ): initialize MF to all core patterns

p, and set L(MF ), L(I|MF ).
6: compute icF : set FList(F ).score
7: L = sort(FList.score, DSC)
8: for F in pop(L) do
9: if (!bConstraintRepair) then

10: costdata = FIND DATA REPAIRS(F )
11: push(evalConstraints[], F ): mark F as evaluated
12: if (bConstraintRepair) then
13: costconstr = FIND CONSTRAINT REPAIRS(F )
14: if (costdata ≤ costconstr) then apply data repairs
15: else apply constraint repairs

FIND DATA REPAIRS(F )
1: costF = L(MF ) + L(I|MF )
2: F ∗: constraints impacted by current repair
3: for d a deviant of F do
4: costd = get best cost(d): best cost of d
5: costd += get impact cost(d, F ∗)
6: ∆DL =get updated model cost(F,MF , d, costd)
7: if (∆DL < 0) then
8: MF =update(MF , F, d)
9: update constraints after repair(F, d,F ∗)

10: costF+ = costd
11: add repair(F, d)
12: add repair(F ∗, d)
13: return costF

values, to favor meaningful data repairs, we imposed a penalty
(larger data repair cost) on updates that transform a source
value to an empty target value. Based on our experiments, we
chose β to equal at least 0.4 (at least 40% of the attributes are
similar between a core pattern and a deviant), and manually
adjusted θ, to generate more selective data repairs.

A. Repair Quality

We evaluated two types of errors: errors that are introduced
during the repair process (incorrect repairs); and errors that
are not resolved, because the algorithm determines the cost is
too high. We used precision and recall to measure these two
types of errors for data and constraint repairs:

• precisiondata = #correctRepairs
#totalRepairs

• recalldata = #correctRepairs
#totalErrors

• precisionconstraint =
#correctedTuples

#totalModifiedTuples



Algorithm 2 Constraint repair algorithm
FIND CONSTRAINT REPAIRS (F )
Input: n := |R|

1: costF = best costF = MAX COST;
2: best score = MAX COST; cur score = 0;
3: winning attr = -1;
4: build attribute classes(): build ca for each A
5: for i in n (not in F ) do
6: cur score = COMPUTE SCORE(F, i, &costF )
7: if (cur score < best score) then
8: winning attr = i
9: best score = cur score; best costF = costF

10: return best costF

COMPUTE SCORE(F, attr, costF )
1: complete = homog = 0.0; L(MF ) = 0
2: L(I|MF ) = ((|F |+ 1) ∗N): +1 for the repair attribute
3: for (ca in attribute classes(F )) do
4: overlap reps[]: common reps between cxy and ca
5: compute overlap(F, attr, ca, &overlap reps)
6: complete += computeComplete(F, ca,overlap reps)
7: homog += compute homogeneity(F, ca,overlap reps)
8: update cost ca(F , &L(MF ),&L(I|MF ))
9: costF = L(MF ) + L(I|MF )

10: return (homog)

• recallconstraint =
#correctedTuples
#totalErrorTuples

Precision measures repair correctness whereas recall cap-
tures repair completeness. Let e be the error rate measured
as the fraction of cells in the relation that are made to
have errors. We generated a relation I , where |I| = N that
satisfies F : X → Y , where |XY | = m and we injected
a total of e ∗ (N ∗ m) errors by modifying attribute values
(in XY ), creating an inconsistent relation. For data repairs,
the #correctRepairs are those repairs that resolve the (true)
injected errors. For constraint repairs, not all the tuples in
I are inconsistent. The #correctedTuples are tuples that are
resolved wrt F by adding the recommended attribute. If
the recommended attribute A has a large domain (contains
many distinct values), adding A to F may not only neatly
separate the conflicting tuples, but may also separate consistent
tuples. The #totalModifiedTuples are the number of tuples that
have been separated by A, regardless of whether they were
inconsistent.

Figures 1 and 2 measure the quality of the recommended
data and constraint repairs, by reporting the precision and
recall, respectively. For these tests, we set N = 50k for a
single F with m = 4, θ = 0.01 and β = 0.7. From Figure
1, we observed that as e increases, the precision for data
repairs moderately decreases, as expected. The constraint
repair precision values increase, as the number of modified
tuples decreases for increasing e. For small e, most of I is
consistent and adding A separates these clean tuples. As e
increases, there are more inconsistent tuples (likely with low

frequency) such that adding A does not cleanly distinguish
these inconsistencies. We note that since we are working with
synthetic data containing randomly generated data values, we
are not able to leverage natural correlations among the attribute
values that may exist in real data.

Figure 2 shows the recall values for data repairs are fairly
high demonstrating that we are able to capture the majority of
the true errors in the data. The recall values for the constraint
repairs decline as e increases as it becomes increasingly
difficult to find an attribute with a distribution of values that
matches the random distribution of errors in I . Similar to
precision, this is an artifact of working with the synthetic TPC
data generator. We investigate the quality of repairs in a case
study using real data in Section VII-D.

B. Scalability

We evaluated the scalability of our data and constraint repair
algorithms (both individually and together) using the TPC-H
data generator. In particular, we measured the running time
against the number of tuples, the error rate, and varying the
number of constraints, and the number of attributes.

Number of Tuples. In Figure 3, we vary N from 40k to
200k and measure the running times. We fix e = 0.03, θ =
0.01, β = 0.7, for a single F with m = 4. The running time
of the constraint repair algorithm is higher than the data repair
algorithm since we need to build the classes for each attribute,
and compare them with the clusters wrt F . There is approxi-
mately a 7% overhead on top of the constraint repair running
time to run both the data and constraint repair algorithms
together. This overhead is primarily due to maintaining the
data structures that record the repairs and their costs.

Error Rate. Figure 4 shows the running time as the error
rate e increases. We fix N = 50k, θ = 0.01, β = 0.7, with
a single constraint F with m = 4. We observe that all the
running times moderately increase, but the composition of the
total time (data and constraint repairs together) changes as e
increases. For smaller e values, the constraint repair process
consumes a larger portion of the total running time since we
need to build and compare the attribute classes. As e increases,
although there are more errors, and more classes to compare
against, the potential overlap of erroneous values minimizes
the constraint repair overhead. However, there are an increased
number of data repairs found, which increases the running time
of the data repair algorithm.

Number of Constraints. We studied the impact of varying
the number of constraints on the running time for N =
50k, e = 0.03, θ = 0.01, β = 0.6, and m ∈ [2, 4]. Fig-
ure 5 shows that the constraint repair time scales linearly
as the number of constraints increases due to the search
for a suitable repair attribute. The data repair time grows
more aggressively because of the extra processing required
to handle updates that affect other constraints. We observed
these interdependencies where constraints F with larger m,
that share overlapping attributes with other constraints, are
evaluated first. For subsequent constraints, the update from F
helped to resolve the inconsistency in the problematic tuples.
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Our running times compare favorably over the performance of
GREEDY-REPAIR-FDFIRST (GF) [1] (on different systems,
with approximately 50k tuples and 10 FDs); GF ran in 5hrs
vs. our combined data and constraint repair algorithm ran in
2.7hrs.

Number of Attributes. We vary the number of attributes
n = |R| when searching for a repair attribute in a constraint
repair. We fix N = 50k, e = 0.03, θ = 0.01, β = 0.6, for
three constraints each having m = 3. The domain size of
the attributes ranged from [4, 38600]. Figure 6 shows the
running times of the constraint repair algorithm for n ∈ [4, 9]
(which includes the m = 3 attributes in F ). The repair
algorithm still builds the classes for all the attributes in I
since each F has different attributes and together they span
most of the attributes. We maintain a sorted index that is
used to compare the attribute classes. The index minimizes
unnecessary lookups, and avoids the worst case quadratic
running time. As n increases, we observe that the running
times moderately increase as expected.

C. Comparative Study

The most closely related work to ours is on data repairs.
Bohannon et al. [1] propose a repair framework that updates
data values based on accuracy and similarity. Accuracy is
modeled based on a tuple’s weight, and similarity is measured
by record linkage techniques. Due to the large number of
possible repairs, their approach for repairing FDs, like ours,
is heuristic. They propose greedy algorithms that group X
values (from the violated constraint) into classes and select the
target Y value with minimal similarity cost. Their data repair
algorithm considers modifications only to the consequent Y

values, whereas we evaluate potential repairs to both X and
Y values. While our work is in a similar spirit to this work,
our cost model (and algorithms) were explicitly developed to
permit us to compare the cost of data vs. constraint repairs,
something that was not considered by Bohannon et al.

We evaluated our approach against the GF data repair
algorithm [1] using the real ’Veterans of America’ dataset
[16]. This dataset contains demographic, socio-economic data
of donors, and information on the frequency and amount
of past and current donations. It is designed to assess the
effectiveness of their marketing plan. The dataset consists of
N = 95412 records and we use n = 9 attributes, with a
schema of (state, male-vet, num-promos, prev-hitrate, wealth-
rating, income, edu, freq, amt). Continuous value attributes
are transformed into categorical values. We postulated the
following set of constraints:

• F1 : (freq, amt) → (income)
The frequency, amount of a donation determines income.

• F2 : (prev-hitrate) → (freq, amt)
How often donors replied to another organization deter-
mines their likelihood to donate now.

• F3 : (wealth) → (amt)
A donor’s wealth rating determines the amount donated.

• F4 : (income) → (edu)
Income level determines education level.

We used θ = 0.2, β = 0.4, and the FDs were processed in
order of F1 − F4. We recommended constraint repair for F2

and F3, with the top-3 attributes, respectively, {edu, income,
wealth}, and {edu, prev-hitrate, state}. Donors’ education and
income level (in addition to previous hit rate) influences their



likelihood to donate. Similarly, education level and previous
donations affect the amount donated wrt F3. Interestingly, in
F3 the wealth rating is state specific [16], coinciding with
our state attribute recommendation. Both F2 and F3 hold on
approximately 25% of the data, and up to 20% and 45% of
the (inconsistent) tuples (wrt F2 and F3, respectively), can
be corrected by adding one of the recommended attributes
to the constraint. Our recommendations give insight into data
trends (e.g., direct marketing towards educated, philanthropic
donors), which help to make the constraints not only more
selective but more consistent with the data.

Our data repair algorithm considers the global impact of a
data repair across all FDs, whereas GF makes local repair de-
cisions involving the current inconsistent FD. For data repairs,
we found that 68 of the total 130 data repairs were affected
by data repairs from other FDs. For example, increasing the
amt value, and increasing the freq of a donation wrt F1

(in 3303 tuples) helped to resolve inconsistencies in 3794
tuples wrt F2. GF does not consider direct updates to amt
based on F1. However, since amt is in the consequent of
F2, and if this value is updated, it may indirectly cause
an inconsistency in F1. This could only be repaired, under
their approach, by incorrectly updating income. Note that
our data repair algorithm considered repairs to income but
determined that this was undesirable due to large update costs.
The data repair for F3 showed heavy skew (92% of the repairs)
towards updating the wealth value, indicating a constraint
repair is needed, as expected. The GF algorithm would update
the Y (amt) value (repair costs permitted), which would be
incorrect in this case since wealth is state specific. Our repair
algorithms propose repairs consistent with application trends
in the data that previous techniques are unable to find.

D. Cora Case Study

We evaluated the quality of our data and constraint repairs
using the well known bibliographic Cora dataset [17]. The
dataset consists of N = 1295 records and n = 13 attributes
with a schema of (authors, volume, title, institution, venue,
location, publisher, year, pages, editor, note, month, class).
We postulate the following set of constraints:
• F1 : (venue, year) → location

A venue and year is always held at the same location.
• F2 : (title, venue) → authors

A paper title and venue determines the authors.
• F3 : (venue, location) → editor

A venue held at location determines the editor.
• F4 : (venue) → publisher

A given venue determines the publisher.
Our objectives are: (1) to evaluate the cost model and check

the type of repairs recommended based on the inconsistencies
in the data; and (2) to evaluate the quality of the repairs. We
ran our data and constraint repair algorithms individually and
together. At θ = 0.005 and β = 0.5, the data repair and
constraint repair algorithms ran in 2.5s and 1.6s, respectively,
and together the total running time was 3.2s.

TABLE II: Description length values

FD DLstart DLdata DLF

F1 3885 2949 3244
F2 3885 2995 4752
F3 3885 3528 2792
F4 2590 3215 2673

1) Cost Model Evaluation: Table 2 shows the starting and
final DL values based on the type of repair recommended.
The constraints were evaluated in the order of F2, F4, F1

and F3. We see that data repairs are recommended for F1

and F2, and constraint repairs are recommended for F3 and
F4, as expected. For F1, year and location contain more
standardized values, hence the majority of the inconsistencies
lie in venue, and most of the data repairs are focused here.
For F2, the constraint repair algorithm recommends adding
pages to uniquely identify a published paper. However, the
cost to correct the venue and authors data values is cheaper.

The FDs F3 and F4 were chosen as constraints that are
close but not completely correct. F3 does not hold for journals.
Most journals in the dataset contain empty location values and
may have multiple editors. Our repair algorithm recommends a
constraint repair for F3 using volume, as expected. Similarly,
we recommend adding editor to F4 for venues that may have
changed publishers.
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Fig. 7: Precision and recall (based on repair type) for each
inconsistent constraint.

2) Quality Evaluation: Figure 7 shows the precision and
recall values for each F based on the type of repair recom-
mended. Overall, the precision values show that our repair
algorithms do well in returning correct repairs. In particular,
the data repairs for F1 and F2 not only focused on standard-
izing the names of venues and author names, but also fixing
incorrect values. Table III gives some example repairs. The
recall values for constraint repairs show that we are able to
leverage natural correlations in the attribute values to resolve
inconsistencies.

VIII. RELATED WORK

Approaches for the management of inconsistent data include
the definition and use of soft or relaxed constraints [18], [19],



TABLE III: Example repairs

F1: (New York → Seattle,WA)
Correct the location of 21st ACM STOC conference.
F2: (Combining Regression Estimates
→ The Strength of Weak Learnability)
Update paper title of R. Schapire in Machine Learning 5(2), ’90.
F3: (Advances in NIPS, san mateo, CA.)
→ (touretzky, d., mozer, m., hasselmo, m.)
→ (steven hanson, jack cowan, lee giles)
Add attribute ’volume’ to F3 (v8 and v5) to distinguish editors.
(journal of the ACM)
→ (F. Thomson Leighton) and (Joe Halpern)
Distinguish via volumes 43(3) and 46(3), respectively.
F4: (conf on compute learning theory (COLT)
→ (springer-verlag) and (acm press)
Distinguish publisher by adding editor or year.
In this case, (Kivinen, Jyrki and Sloan, Robert H., 2002),
and (Shai Ben-David, Phil Long, 1999), respectively.

and conditional constraints [20], used in query processing and
data cleaning. All still require some notion of satisfiability.
While we have considered repairing FDs, a similar model
could be used to ensure data continues to satisfy these more
relaxed constraints. Additionally, a number of approaches
discover constraints from the data [4], [8], [10], [5], [6],
which are not only expensive to compute, but do not consider
(modifying) the existing set of constraints that were known to
hold for the application at one time.

In addition to the data repair work of Bohannon et al. [1]
(considered in our evaluation Section VII-C), recent work
by Beskales et al. [21] investigate cardinality-set-minimal
data repairs, that balance the requirements of minimal data
changes (cardinality) and necessary changes (set minimality).
Their algorithm randomly samples from the space of possible
data repairs. While our work is in a similar spirit to both
these pieces of work, our cost model (and algorithms) were
explicitly developed to permit us to compare the cost of
data vs. constraint repairs, something that was not considered
previously.

A data repair algorithm that resolves violations of condi-
tional functional dependencies (CFDs) is given by Cong et
al. [2]. This work extends the repair algorithm for FDs by
Bohannon et al. [1] by considering updates to both the X and
Y attributes, however preference is given to Y repairs. Hence,
their repair model can exclude updates to attributes in X that
may be better overall. While our focus is on the more general
problem of FD repair, our data repair algorithm considers a
forward check of the cost impact of each update on other
dependencies.

Recent work in CFDs and data quality [10] propose a
discovery algorithm that finds exact and approximate CFDs
that hold over I . The approximate CFDs are used to suggest
target values for potentially dirty data values. However, the
relevant constraints are discovered based on the data (and
are not given a priori as in our approach). Kolahi et al. [3]
investigate the complexity of finding optimal data repairs using
variables (called V-repairs) when functional dependencies are
violated. For a given set of violated FDs, the authors present

an approximation algorithm that finds V-repairs within a
constant factor of the optimal repair.

IX. CONCLUSIONS AND FUTURE WORK

We have presented the first algorithm for constraint re-
pair that considers and compares modifications to the data
and modifications to the constraints on an equal footing.
We consider the most commonly used constraint, functional
dependencies. Our results provide a foundation for constraint
maintenance, one that does not overfit constraints to real data
that may contain errors. As such our repaired constraints
maintain their value in helping to ensure data quality. We
are currently extending our work to handle other types of
constraints including conditional functional dependencies, and
to handle incomplete data. Missing values have a special
semantics that should be considered within our cost model
for both data repair and constraint repair.
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