
Don’t Mind Your Vocabulary:
Data Sharing Across Heterogeneous Peers

Md. Mehedi Masud1, Iluju Kiringa1, and Anastasios Kementsietsidis2

1 SITE,University of Ottawa
{mmasud, kiringa}@site.uottawa.ca

2 School of Informatics, University of Edinburgh
akements@inf.ed.ac.uk

Abstract. The strong dynamics of peer-to-peer networks, coupled with
the diversity of peer vocabularies, makes query processing in peer
database systems a very challenging task. In this paper, we propose a
framework for translating expressive relational queries across heteroge-
neous peer databases. Our framework avoids an integrated global schema
or centralized structures common to the involved peers. The cornerstone
of our approach is the use of both syntax and instance level schema map-
pings that each peer constructs and shares with other peers. Based on
this user provided mapping information, our algorithm applies generic
translation rules to translate SQL queries. Our approach supports both
query translation and propagation among the peers preserving the au-
tonomy of individual peers. The proposal combines both syntax and
instance level mappings into a more general framework for query trans-
lation across heterogeneous boundaries. We have developed a prototype
as a query service layer wrapped around a basic service providing het-
erogeneity management. The prototype has been evaluated on a small
peer-to-peer network to demonstrate the viability of the approach.

1 Introduction

In the past few years, Peer-to-Peer (P2P) applications have emerged as a popular
way of sharing data in decentralized and distributed environments. In such envi-
ronments, involved data sources, called peers, act autonomously in their sharing
of data and services. A peer database system (PDBS) consists of a peer or node
of a P2P network which has been augmented both with a conventional data
base management system and an interoperability layer that enables data shar-
ing across (usually) heterogeneous boundaries. The local databases on each peers
are called peer databases. Each PDBS is independent of others and maintains
its own peer databases. In addition to the latter, each PDBS needs to establish
value correspondences between its local data and data on remote PDBSs for
the purpose of data sharing. Such value correspondences constitute logical links
that we call acquaintances. For example, we may consider a network of peer
database systems of family doctors, hospitals, medical laboratories, and phar-
macists that are willing to share information about treatments, medications and

R. Meersman and Z. Tari (Eds.): CoopIS/DOA/ODBASE 2005, LNCS 3760, pp. 292–309, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Don’t Mind Your Vocabulary 293

test results of their patients. Consider a situation where a patient has an acci-
dent in a city where he is currently visiting. He then visits a walk-in clinic. The
doctor in the clinic needs to know the patient’s previous medications and treat-
ments from the patient’s family physician. The associated doctor in the walk-in
clinic establishes acquaintances with the patient’s family doctor and pharmacist
for sharing information about the patient. The doctor in the walk-in clinic then
retrieves information from the acquainted peers, for instance family physicians
and medical laboratories. In this perspective, we need particularly fine-grained
data coordination, sharing and query processing strategies. Coordination rules
need to be dynamic because peers join and leave the system freely. In such a
dynamic environment, the existence of a global schema for the entire databases
is not feasible [4].

Query processing techniques in peer database networks can be compared to
similar techniques used in the traditional distributed and multi database systems
which use global or mediated schema to allow viewing of all involved databases
as one single database.

On the contrary, in general, peer database systems have no such global
schemas and permit true autonomy to peers. In addition, queries are posed
on local database and results are retrieved from the local database as well
as from the peer database network. In this paper, we make the following
contributions.

– First, we present a query translation mechanism that does not use a restric-
tive global/mediated schema and that considers the heterogeneity and au-
tonomy of peer databases. The algorithm translates arbitrary Select-Project-
Join SQL queries, where the selection formula may contain both conjunctive
and disjunctive normal form with negation.

– Second, the algorithm translates queries according to a collection of user-
generated rules that combine a restricted form of syntactic schema mappings
with the data instance level mappings. We also present a mapping stack
consisting of four layers of mappings that each peer uses partially or fully in
order to create semantic relationships with other peers.

– Finally, we implemented our query translation algorithm on top of the in-
creasingly reliable P2P JXTA framework [1]. We ran the implementation
on six JXTA-based peers. We show measurements that indicate that the
algorithm is efficient.

The remainder of the paper is organized as follows. Section 2 describes a usage
scenario. In Section 3, we discuss peer-to-peer mapping semantics, followed by
Section 4 that discusses the peer-to-peer query semantics. Section 5 presents
the query translation rules and framework and Section 6 describes the query
translation algorithm. In Section 7, we show experimental setup and results.
Section 8 treats related work.

Finally, we address the scope for future work and conclude in Section 9.

294 Md. M. Masud, I. Kiringa, and A. Kementsietsidis

2 Motivating Example

We use a motivating example from the Health Care domain where hospitals,
family doctors and pharmacies, all share information about patients. This infor-
mation includes health histories, medications, and exams. Figure 1 depicts the
schemas used for this domain. The Family Doctor peer has a unique Ontario
Health Insurance Patient (OHIP) number assigned to each patient and record
is kept of name, illness, date of visit and medication of patients. The relation
MedicalExam stores the information about the patients’ medical examinations.
The Hospital peer has relations Patients and Labtest. Table 2 shows partial
instances of both peer databases. Assume that a patient has been admitted
to a hospital. The doctor in the hospital needs the medical examination that
the patient has gone through on admission as well as the patient’s recent test
reports from the patient’s family doctor. To get the medical examination, the
doctor in the hospital may pose the following query against the local Hospital
peer database:

Q1: select * from LabTest where PATID=“243” AND Test=“C0518015”

To get the test reports, the very same doctor needs to have the following query
posed against the remote peer database of the patient’s family doctor:

Q2: select * from MedicalExam where OHIP=“501NE” AND TestName=“homoglobin”

Normally, due to the autonomy of peer databases, the doctor in the hospital
should be able to pose the later query in terms of the schema and instance
data values of his local peer database. However, Figure 2 shows that there are
differences in the way patients’ information is represented both at the schema
and at the data instance level in the two peer databases. This representational
discrepancy raises the need for some way of mapping one representation to the
other, both at the schema and at the data instance levels. Such a mapping will
permit interpretability between these heterogeneous scenarios for query transla-
tion. We will use mapping tables [15] to resolve heterogeneity at the data level
and syntactic mappings of schema element for schema level heterogeneity during

Patient (OHIP, Lname, Fname, Illness, Date)
MedicalExam(OHIP, TestName, Result)

(a) Family doctor database

Patients (PATID, Primary Desc, Name)
Labtest (TestID, Test, Result, PATID)

(b) Hospital database

Fig. 1. Database schemas

Don’t Mind Your Vocabulary 295

OHIP Lname Fname Illness Date
233GA Lucas Andrew Headache Jan/04
501NE Davidson Ley Allergy Jan/04

(a) Patient table instance

OHIP TestName Result
233GA whitebloodcount 9755 c/mcL
501NE homoglobin 14.6 g/dL

(b) MedicalExam table instance

PATID Name Primary Desc
243 Davidson,ley StomachPain
359 Lucas, Andrew Heart Problem

(c) Patients

TestId Test Result PATID
4520 C0427512 633 c/mcL 359
4521 C0518015 12.5 g/dL 243

(d) LabTest table instances of hos-
pital database

Fig. 2. Database instances

query translation. Based on these mappings, we develop several generic query
translation rules that translate a query q posed on a peer P to a set of queries
Q′ = {q1, · · · , qn}, where each one of the qi’s is the original query q translated
to the vocabulary of a given acquainted peer Pi.

3 Peer-to-Peer Mappings

In what follows, we assume that sources are fully autonomous and may partially
or fully share information at different levels. We consider pairwise mappings
between peers with their shared schema elements. A mapping consists of four
layers. Figure 3 shows the four layers of mappings. The top layer is the peer-
to-peer mapping, which defines the acquaintance between two peers. Schema
elements are exchanged between peers as part of the acquaintance protocol.
The second layer is the schema level mapping which helps to overcome schema
level heterogeneity. The next layer is the attribute level mapping that is used to
overcome heterogeneity at the attribute level. The last one is called instance/data
level mapping. We use this layer if there are any differences in data vocabularies
between attributes of two peer relations. We use the concept of mapping tables
to create the data layer mapping.

Peer Peer
Schema Schema

Attribute Attribute
Data Data

Peer Peer

Top Layer

Bottom Layer

Fig. 3. Peer to Peer mapping stack

296 Md. M. Masud, I. Kiringa, and A. Kementsietsidis

There may be four different types of mappings between schema elements. They
are as follows: one to one, one to many, many to one, and many to many. To take
on one these, in a one to many mapping, a schema element such as an attribute/
relation of one peer is mapped to more than one attribute/relation of another peer.
For example the attribute Name of relation Patients is mapped to attributes
Lname and Fname of relation Patient. Moreover, a set of attributes of one re-
lation in one peer may be mapped to more than one relation in another peer.

3.1 Mapping Tables

Mapping tables [15] are used to represent the data value correspondences be-
tween attributes of two different relations to account for differences in data
vocabulary. Intuitively, a mapping table is a relation over the attributes X ∪ Y ,
where X and Y are non-empty sets of attributes from two peers. For example,
Figure 4 shows a mapping table representing a mapping from the set of attributes
X={OHIP} to the set of attributes Y={PAITID}. The same table shows another
mapping table that relates MedicalExam.TestName and LabTest.T est.

Mapping tables represent expert knowledge and are typically created by do-
main specialists. Currently the creation of mapping tables is a time-consuming
and manual process performed by a set of expert curators. Still there is no com-
plete automated tool to facilitate the creation, maintenance and management
of these tables [15]. However, the paper [15] introduces two mechanisms: i. In-
fer new mapping tables to find a set of all mapping tables that are valid and
available over a network of peers and ii. Determine consistency of mapping table
to ensure consistency when update occurs in mapping tables. However, both of
these mechanisms play an important role in helping a curator understand and
correctly specify the semantics of a set of mapping tables.

OHIP PATID
501NE 243
233GA 388

(a) Mapping table
OHIP2PATID

TestName Test
homoglobin C0518015

whitebloodcount C0427512

(b) Mapping table Test-
Name2Test

Fig. 4. Example of mapping tables

We can treat mapping tables as constraints in exchanging information be-
tween peer databases [15]. In the present paper, we use mapping table in this
sense. We assume a closed world semantics for mapping tables.

3.2 Data and P2P Network Model

This section introduces some basic notions that will be used throughout the pa-
per. A database schema is any nonempty, finite set DB[W]={R1[U1],. . ., Rn[Un]}

Don’t Mind Your Vocabulary 297

of relations, where Ui is a subset W , the set all available attributes, and Ri is a
relation name; Ri[Ui] denotes a relation Ri over a set Ui of attributes. Given a
relation R, and a query q, we will use the notation att(R) and att(q) to denote
the set of attributes mentioned in R and q respectively. Instances of a relation
schema Ri[Ui] and a relational database DB[W] are defined in the usual way.

Now we formally introduce the notion of a network of PDBSs.

Definition 1. A network of PDBSs is a pair (N , M). Here, N = {(P , L}) is an
undirected graph, where P ={P1,· · ·, Pn} is a set of peers, L={(Pi, Pj)|Pi, Pj ∈
P} is a set of acquaintances. Each peer Pi is associated with an instantiated rela-
tional database – a peer database – with schema DBi[Wi], and each acquaintance
(i, j) is associated with a set Mij ∈ M of mapping tables.

We will interchangeably call networks of PDBSs “P2P networks”. that peers
make only a subset of its schema visible to its peers. That is, we assume that
each peer Pi exports a (possibly empty) subset Vi ⊆ DBi[Wi] of schema elements
(i.e. attributes or relations) called export schema of Pi. For simplicity, we assume
that Vi ∩ Vj = ∅, for all i �= j.

4 Peer-to-Peer Query Semantics

We assume that each query in PDBSs is defined in terms of the schema of a
single peer. Each user is only aware of the local database schema. We also assume
unrestricted select-project-join SQL queries. There are two types of queries in
PDBs, namely local and global queries [8]. A local query is defined in terms
of a local peer database schema, while a global query is defined over the peer
database schema of the P2P network that are directly or indirectly acquainted
with the peer where the global query is initiated. Semantically, a global query
is a set of queries translated from the local query, all destined to acquainted
peers. A global query is generated when a user wants results from all reachable
(directly or indirectly) acquainted peers in the P2P network.

This informal semantics of queries can be formalized as follows (slightly mod-
ifying the semantics given in [14]). Suppose a network N = (N , M) of PDBSs,
where N = (P , L) and P = {P1, · · · , Pn}. A local query q in a peer Pi ∈ P
is defined over (a subset of) the schema DBi[Wi] of P . The answer to q is a
relation over the instance dbi of DBi[Wi]. A global query qN over the P2P net-
work N is a set {q1, · · · , qk} (1 ≤ k ≤ n), where each query qi (1 ≤ i ≤ k)
is a component query defined over the schema of a reachable peer. The intu-
ition behind this definition is the following: each component query qi is a user
defined query that has been forwarded to all reachable peers via translation
through the given mapping tables. The answer to the global query qN is the
set {q1(dbi1), · · · , qk(dbik

)}, where qj(dbij) (1 ≤ j ≤ k) is a relation over the
instance dbij of peer Pj .

For query propagation we use a translation − and − forward mechanism.
When a user poses a query on a peer then the peer first translates the query for
all acquainted peers and sends the translated queries to its acquaintances. Before

298 Md. M. Masud, I. Kiringa, and A. Kementsietsidis

sending the translated query the peer first adds a tag, we say global identification
(GID) of the query as well as the peer identification (PID). When a remote peer
receives the query, the peer either translates and/or forwards the query adding its
PID with the query. This translation−and−forward process continues until no
further propagation is possible. The global identification (GID) is used to avoid
duplicate translation of a query in a peer because a peer may receive queries in
different form but with same GID from multiple acquaintances. Therefore, if a
peer receives a query with the same GID as a query already seen, then the new
query is rejected. The path tag makes this possible and thus helps avoid cycles.
So the path tag is used to trace from which peer the query has been originated
and the list of peers the query has been visited. Therefore, looking at the path
tag, a peer knows whom to forward the query.

5 Query Translation

Query translation is the problem of transforming the query vocabulary of q over
the schema of a local peer P to a query q′ over the schema of an acquainted
peer P ′. The query vocabulary refers to three types of information, namely the
set of attributes that represent the answer or result of the query, the data val-
ues mentioned in query search conditions, and the relation names mentioned in
the query.

Example 1. Consider the following query which retrieves OHIP number and
test result of a patient with Lname = “Lucas”, Fname = “Andrew ” and
TestName = “whitebloodcount”.
Q3: select OHIP, Result, Date from Patient, MedicalExam

where Patients.OHIP=MedicalExam.OHIP AND (Lname=“Lucas”
AND Fname=“Andrew”) AND Test=“whitebloodcount”

From the above query we find the following query vocabularies: i. the set of
attributes represent the answer or result of the query:(OHIP, Result, Date) ii.
the set of query search conditions (Lname=“Lucas”, Fname=“Andrew”, and
Test=“whitebloodcount”) and iii. the set of relations (Patient, MedicalExam).

In order to pose the query in terms of vocabularies of acquainted peers for
example the peer Hospital, the translated query should be as follows.
Q4: select PATID, Result from Patients, LabTest

where Patients.PATID=LabTest.PATID AND Name=“Lucas, Andrew”
AND Test=“C0427512”

In order to translate the query vocabularies that means query attributes, rela-
tions and data vocabularies in search conditions we use the notion of correspon-
dence assertions and introduce translation rules. We simply translate the query
attributes and relations from correspondence assertions and search conditions
from translation rules. The semantics of correspondence assertion and transla-
tion rules are defined in the following two sections. We later show how these two
things are used to translate queries.

Don’t Mind Your Vocabulary 299

5.1 Correspondence Assertion (CA)

In our peer to peer system we assume that each peer exports part of their schema
as a shared schema that are made available to the system to create acquaintances
with other peers. Mapping tables are also placed in peers to resolve difference in
data vocabulary with acquainted peers. Therefore, we need to formally charac-
terize the relationship between exported elements (attributes/relations) between
acquainted peer schemas. We capture this relationship in the notion correspon-
dence assertion (CA) between peers’ shared schemas. We can also create cor-
respondence assertions between two attributes that form a mapping table. In
general, a mapping table m[X ∪ Y] encodes, in addition to the set of data as-
sociations, an attribute correspondence between the set of attributes X and Y .
This generation of CAs occurs at acquaintance time.

Example 2. Consider the instances in Figure 2 and the mapping tables in Fig-
ure 4. Suppose the Family Doctor peer has the following export schema:

V = {OHIP, Lname, Fnane, T estName, Result}
Also suppose the Hospital peer has the following export schema:

V = {patid, name, test, result}
Therefore we create the following correspondence assertions.
CA1: OHIP−→PATID, CA2: Name, Fname−→Name, CA3: TestName−→Test

5.2 Translation Rule

In this section we introduce some query translation rules that are used to trans-
late query search conditions and their data vocabularies. For example consider
the query Q3 and Q4. In the query Q3, the search condition for patient name
is given using (Lname=“Lucas”, Fname=“Andrew”) and test name is given
using (Test=“whitebloodcount”). But the patient name is represented in peer
Hospital is represented in different format and the condition should be trans-
lated as name=’Lucas, Andrew’ to be recognized in peer Hospital. Also the test
name “whitebloodcount” is represented in peer Hospital with different data
vocabulary “C0427512”. For this purpose we need some kind of translation
rules to resolve these heterogeneity. In this paper we address four translation
rules are named as Merge (M), Separation (S), Data Association (DA), and
Data Conversion (DC). Each one of the following sections describes each one of
these query translation rules and shows how these rules translate query search
conditions.

Merge Rules (M). This rule resolves differences in format. Therefore, we need
a mechanism to translate the data format in the selection formula of the source
query to the format of the formula that represents the target selection formula.
We represent a merge rule as follows:

σ∧
Ai=xi

: σB=y : y = ΠB(R′ �� T∧
Ai=xi

), (1)

300 Md. M. Masud, I. Kiringa, and A. Kementsietsidis

where R′ = fM (R(A1, · · · , An), B); σ∧Ai=xi is a pattern of a selection formula
in the source query and σBi=y is the translated selection formula for the target
query. The value of y for attribute B is determined by the formula defined in the
translation expression of the rule. The semantics of formula above is as follows:

• fM (R(A1, · · · , An), B) is a function that creates a temporary relation R′ from
relation R with attributes A1, · · · , An, and B; A1, · · · , An are mentioned in
σ∧Ai=xi and B is the target attribute. Values of attribute B are generated with
a user-provided function f that is applied on attributes A1, A2, · · · , An.
• T∧

Ai = xi
is a tabular representation of the term

∧
Ai = xi.

Separation Rule (S). The separation rule is the reverse of the merge rule.
The formal representation of the separation rule is:

σA=x : σ∧
Bi=yi

: yi = ΠBi(R
′ �� TA=x), (2)

where R′ = fS(R(A), (B1, · · · , Bn)); σA=x is a pattern of a selection formula and
σ∧

Bi=yi
is the translated selection formula. The value of y′

is for attribute B′
is

are determined by the formula defined in the translation expression of the rule.
The semantics of formula above is as follows:

• fS(R(A), (B1, · · · , Bn)) is a function that creates a temporary relation R′

from relation R with attributes A and B1, · · · , Bn; A is mentioned in σ∧A = x

and B′
is are the target attributes for the translated query. Values of attribute

B′
is are generated with a user-provided function f that is applied on attributes

A.
• TA = x is a tabular representation of the term A = x.

Data Association Rule (DA). Our third translation rule translates queries
based on mapping tables. This rule deals with data level heterogeneity. When a
query mentions a data value that differs from data values used in an acquainted
peer, then we need to translate the predicate term in such a way that other peers
are able to decipher it. We use mapping tables to translate this type of predicate
term. The formal representation of the rule is:

σ∧
Ai=xi

:σ∧ ∨
Bj=yj

: yj = ΠB(m(A, B) �� T∧Ai=xi), (3)

where σ∧Ai=xi is a pattern of a selection formula in a local query q and σ∨Bj=yj

is the translated selection formula for target queries, and A and B are sets
of attributes. The value of yj for attribute Bj is determined by the formula
ΠB(m(A, B) �� T∧Ai=xi). Here, attributes Ai are those mentioned in σ∧

Ai=xi
.

Data Conversion (DC). This rule is used for translating data from one
domain to another. For example, consider an attribute height − in − inches
from one database and an attribute height − in − centimeters from another.

Don’t Mind Your Vocabulary 301

The value correspondence of these two attributes can be constructed by defining
a conversion function f. Formally we represent this rule as follows:

σA op x : σ∨B op y : y = ΠB(R′ �� TA op x), (4)

where R′ = fDC(R(A), B); σA op x is a pattern of a selection formula in a local
query q and σB op y is the translated selection formula for the target query; fDC

is a user-defined function for data conversion; and TA op x is the tabular form
of A op x. If the domain of attribute A and B are same, then function fDC is
called an identity function.

6 Query Translation Process

We start our query translation process defining the relationship between corre-
spondence assertions and translation rules. We define the relationship between
a correspondence assertion and a translation rule as a pair (CA, R). We use
the following syntax to represent the relationship between CA and translation
rule R.

A−→B : r

Where A ⊂ V and B ⊂ V ′. V and V’ are the exported schemas from peer P and
P’. Each rule r ∈ R defined in section 5.2 describes the relationship between
attributes of correspondence assertions and how the vocabularies are translated
in terms of structural, format, and data values. The translation process starts
when a user poses a query on its local database and wants a global execution of
the query. query to its acquaintances. The algorithm to translate queries is shown
in Figure 5. The algorithm mainly translates the selection part of a query. There
are two steps for translating a selection of a query. Firstly, the query is analyzed
syntactically and the query condition is transformed into a query condition tree
which is defined as follows.

Definition 2. Suppose q is a query. The Query Condition Tree(QCT) of q is
a tree representing the selection formula of q, where the inner nodes are boolean
operators AND, OR, or NOT, and leaves are atomic conditions of the form
A op x, where A is an attribute, op is a comparison operator <, >, =, ≤, ≥, or
�=, and x is a constant value.

Secondly, the query condition part is decomposed in terms of the correspon-
dence assertions. The function FindPartition performs this task. The func-
tion FindPartition is shown in Figure 6. The algorithm takes as input a query
tree and predefined set of correspondence assertions. Its output is a set P =
{P1, ...Pn}, where each Pi is a triple (T, CA, R); T is a set of predicate terms
that are resulted from partitioning the original query predicate terms; CA is
the corresponding correspondence assertion that maps the terms in T , and R
is the corresponding translation rule that will be used to translate the predi-
cate terms in T . The function FindPartition finds the potential partitions that

302 Md. M. Masud, I. Kiringa, and A. Kementsietsidis

QueryTranslation (Q)
Input: A query Q from user.
Output: Translated query Q′

begin QCT = Create AND-OR-NOT tree from the
query conditions;

CM = FindPartition(QCT);
/*CM: Set of matchings for query conditions */

for each cmi ∈ CM do
Apply rule ri associated with cmi;
Translate the constraint using translation rules;
Translate (cmi);

end for
end

Fig. 5. Query translation main procedure

can be translated independently. That means partitions are disjoint and there
is no dependency between the terms in the partitions. Consider the following
complex query:

Q5: select lname, fname, result from Patient,MedicalExam
where Patient.OHIP=MedicalExam.OHIP AND
(((lname=“Hall” OR lname=“Hull”) AND (fname=“Andrew”)) OR
(OHIP=“233GA”)) AND (TestName=“whitebloodcount” AND Date=“Jan/04”)

where the predicate P is as follows:

((((lname=“Hall” OR lname=“Hull”)AND(fname=“Andrew”))OR(OHIP=“233GA”))
AND (TestName=“whitebloodcount” AND Date=“Jan/04”))

Consider that we have following associations between correspondence assertions
and rules:

ca1: lname −→ name : 4, ca2: lname, fname −→ name : 1
ca3: OHIP −→ PAITD : 3, ca4: TestName −→ Test : 3
ca5: Date −→ Dt : 4

We assume that correspondence assertions ca1, ca5 are bound to rule 4(Data
Conversion), ca2 is bound to rule 1(Merge Rule) and ca3, ca4 are bound to
rule 3(Data Association). Finding potential partitions is important, because
the composition of two terms in a query predicate may map to a particular
correspondence assertion. Also sometimes, it is possible that a term can not
be translated independently but only in combination with another term can
the composed term be mapped with a correspondence assertion. The lines 2-9
of the algorithm FindPartition first find the mappings based on correspon-
dence assertions. At this point we find the following initial mappings for our
example:

Don’t Mind Your Vocabulary 303

FindPartition(CTree, CA)
Input: A query condition tree CTree and set of Correspondence Assertions CA.
Output: Potential partitions P = {P1, ...Pn} of constraints begin
1. CM = /* CM is a set of pair (t, cai) where t is a atomic term

and cai is corresponding correspondence assertion that covers attribute of t
2. for each term t at leaf, t ∈ T /* T is a set of predicate terms in CTree*/
3. M = {} /* M is a set of matches found in CA for term t */
4. for each correspondence assertion cai ∈ CA
5. if attribute(c) ∈ attribute(cai) then
6. M = M ∪ cai

7. CM = CM ∪ (t,M)
8. end for
9. end for
10. for each mi ∈ CM
11. mk = ∅

12. for each mj ∈ CM and mi �= mj

13. if (mj(ca) ∩ mi(ca)) �= � then
14. mk(t, ca) = {{mi(t) ∪ mj(t)}, {mi(ca) ∩ mj(ca)}}
15. P = P ∪ mk(t, ca) /*Forming partition*/
16. CM = CM − mj

17. end for
18. if (mk = ∅)
19. P = P ∪ mi(t, ca)
20. CM = CM − mi(t, ca)
21. end for
22. end for
23. return P
end

Fig. 6. Finding partition

lname = “Hall”, M = [lname −→ name, lname, fname −→ name]
CM1 = [lname = “Hall”, [lname −→ name, lname, fname −→ name], 4]
lname = “Hull”, M = [lname −→ name, lname, fname −→ name]
CM2 = [lname = “Hull”, [lname −→ name, lname, fname −→ name], 4]
fname = “Andrew”, M = [lname, fname −→ name]
CM3 = [fname = “Andrew”, [lname −→ name, lname, fname −→ name], 1]
OHIP=“233GA”, M = [OHIP −→ PATID]
CM4 = [OHIP = “233GA”, [OHIP −→ PATID], 3]
TestName=“whitebllodcount”, M = [TestName −→ Test]
CM5 = [TestName = “whitebloodcount”, [TestName −→ Test], 3]
Date=“Jan/04”, M = [Date −→ Dt]
CM6 = [Date = “Jan/04”, [Date −→ Dt], 4]

The lines 10-22 perform the task of finding potential partitions from the above
mappings. Therefore we get the following partitions.

P1 = [lname = “Hall”, fname = “Andrew”, [lname, fname −→ name], 1]
P2 = [lname = “Hull”, fname = “Andrew”, [lname, fname −→ name], 1]

304 Md. M. Masud, I. Kiringa, and A. Kementsietsidis

P4 = [OHIP = “233GA”, [OHIP −→ PATID], 3]
P5 = [TestName = “whitebloodcount”, [TestName −→ Test], 3]
P6 = [Date = “Jan/04”, [Date −→ Dt], 4]

Notice that, we can not simply translate the predicate terms independently with-
out looking for the potential dependency from other terms. In the example,
the term fname =“Andrew” does not have any correspondence assertion but
by combining it with the term lname=“Hall”, we can translate the subquery
(lname=“Hall”, fname=“Andrew”). Because the terms can be mapped with the
correspondence assertion lname, fname −→ name. After rewriting the selection
formula we apply, the corresponding translation rule to each newly generated
leaves of the query condition tree.

The query translation algorithm depends on mapping tables and correspon-
dence assertions. The algorithm translates SPJ queries, where selection formula
may contain both conjunctive and disjunctive normal form with negation. Some-
times a situation may arise where a query is not translatable. There are three
reasons for this case. First, no mapping exists in the mapping table to trans-
late a predicate term. Second, there is no correspondence assertion that maps a
predicate term. Third, there is no rule to support the translation of a predicate
atom. In all such cases the query is rejected.

6.1 Sound Translation of Queries

In peer database systems, the translation of a given query is not unique [14].
There could be many possible global queries for a particular query, because
there is no certain control of query propagation in peer database networks. Also
peers are free to join and leave the system at will. Therefore, in most cases, we
do not get complete answer (meaning all the matching tuples in the network),
but at least we get some answer (sound answer) which can be recognized as
complete enough with respect to the set of active peers.

In this section we describe the soundness (correctness) of query translation.
Soundness ensures that the translated query retrieves correct data from ac-
quainted peers which are relevant to the result of the original query. Consider two
peers P1 and P2 with export schemas V1[U1] ⊆ DB1[W1] and V2 ⊆ DB2[W2],
respectively. Assume that a query translation rule r and a mapping table m
exist along with correspondence assertions between the peers. Suppose that a
query q1 is posed over V1 and that q2 is the translation of q1 over V2. We use
the notation q1 �−→ q2 to state that q2 results from the translation of query q1.
Intuitively, ensuring a correct translation means that the translation should be
such that q2 retrieves from P2 only the data that are related to those that could
be retrieved from query q1 in peer P1. It is important to establish such a notion
of correctness. Here, we extend the definition of correctness of query translation
with respect to mapping tables given in [14].

Definition 3. [Soundness w.r.t to Mapping Tables] Let q1, q2 be queries over
peer P1 and P2, respectively; Let q1 = σE(R1 �� �� Rk), where E is a selection

Don’t Mind Your Vocabulary 305

formula and R1, . . .,Rk are relations in P1. Then q2 is a sound translation of q1
with respect to a set M = {m1(X1, Y1), · · · , mk(Xk, Yk)} of mapping tables,
denoted by q1

M
�−→q2, where Xi, i = 1..k, and att(q1) are subsets of

⋃k
i=1 Xi, if

for every relation instance r2 of P2 and t2 ∈ q2(r2), there exists a valuation ρ of
M, and a tuple t ∈ σE(ρ(M)), i = 1 . . . k such that πatt(q2)(t) = t2.

In this paper the translation algorithm incorporates the mapping tables into
data association rules. Formally we must extend the definition of soundness to
incorporate the translation rules seen in Section 5.

Definition 4 (Soundness w.r.t Translation Rules). Let q1, q2 be queries
over peer P1 and P2, respectively; Let q1 = σE(R1 �� �� Rk), where E is a
selection formula and R1, . . .,Rk are relations in P1. Then query q2 is a sound
translation of query q1 with respect to a set of translation rules R and correspon-
dence assertions CA = {ca1, · · · , can} between P1 and P2, denoted by q1

R,CA
�−→ q2,

if att(q1) ⊆ att(CA), att(q2) ⊆ att(CA), and for every relation instance I2 of
P2 and t2 ∈ q2(I2), there exists a tuple t ∈ q1(I1), where I1 is an instance of P1,
such that for all r ∈ R,

1. if r is a merge rule (See rule (5.2)), then, for all selection terms σB=y

mentioned in q2 there is a complex selection term σ∧
Ai=xi

, 1 ≤ i ≤ n,
mentioned in q1, such that

y = ΠB(fM (R(A1, · · · , An), B) �� T∧
Ai=xi

).

2. if r is a data association rule, then use Definition 3.

The cases of the separation and data conversion rules are treated similarly to the
merge rule.

7 Implementation

We implemented the query translation algorithm described in this paper. The
architecture of the query translation framework is depicted in Figure 7. The
translation process starts when a user poses a query through the graphical user
interface and selects the global execution of the query. If the query is local then
the query is processed locally. The main component of the architecture is the
Query Translation Component which is the implementation of the algorithm in
Figure 5.

The monitor component looks for incoming queries in the network. It receives
and forwards queries to the acquainted peers.

The prototype P2P setting is shown in Figure 8. We use MySQL as our DBMS
for the Local DB. Data have been collected from United Airline, Air Canada,
KLM, Luftansa, Air France and Alitalia flight information. There are around 50
mapping tables to map flight numbers, destinations, etc between partner airlines.
Each mapping table contains an average of 150 records. We choose JXTA for
implementation platform because it provides all resources and functionalities

306 Md. M. Masud, I. Kiringa, and A. Kementsietsidis

Local
Database
InterfaceScope

Query
Translation
Component

Check Query

Query Parser

Monitor

Jxta
Network

Pipes

Local DB
Mapping
Tables

CA

Rules

User Interface

Local

Global

Fig. 7. Architecture

UA

AC

AF

AZ

LH

KLM

Fig. 8. The P2P Network

for developing P2P application. For example, it provides basic protocols and
communication links (called pipes) between peers. It also provides basic peer
functionalities such as creation a peer on a network; creation of messages and
messages communication onto pipes, discover peers, creation of peer groups and
join a peer group, etc. JXTA is an open network computing platform for P2P
computing. It provides IP independent naming space to address peers and other
resources. Java is used for the programming language. The P2P platform is
simulated on IBM computers with windows XP operating system. The CPU is
Pentium 4 3.0 GHz and RAM is 760MB.

7.1 Experimental Results

To evaluate our algorithm, we measure various run times. We first find map-
ping times of query predicates because query translation mainly depends on the
size of predicate in the query. shows a query and a resulting translated query.
Figure 10 shows the mapping times and predicate translation times of queries.

Fig. 9. An output of a translated query

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 1 2 3 4 5 6 7 8

T
im

e
(I

n
se

cs
)

Number of disjuncts

Predicate Mapping
Predicate Translation

Fig. 10. Predicate mapping and trans-
lation

We run this experiment with 8 queries where the number of search condi-
tions gradually ranges from 1 to 8. That is, the first query has one condition,

Don’t Mind Your Vocabulary 307

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0.05

 0.055

 0.06

 0 2 4 6 8 10 12 14 16 18 20

T
im

e
(I

n
se

cs
)

Number of Output Disjuncts

Fig. 11. Query translation time with size
of output queries

Fig. 12. Query translation for different
peers

the second two condition, and so on. We see from the figure that the mapping
times increase gradually. The queries are chosen in such a way that there are
interdependency between predicate terms in the query. Nicks on the curves are
points where there is a change in the amount of interdependency among pred-
icate terms. between the time required to perform a query translation and the
size, in terms of predicate terms, of the translated (or output) query. Figure 11
shows the translation times for queries which gradually produce a number of
terms ranging from 1 to 20. The interesting point to notice from Figure 11 is
that it is not the number of terms in the output query which a relevant fac-
tor for the running times to generate these terms. These times mainly depend
on the number of terms in the input query and on the dependency between
predicate terms.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 2 4 6 8 10 12

T
im

e
(I

n
se

cs
)

Number of Acquianted Peers

4 Queries/Sec
8 Queries/Sec

12 Queries/Sec

Fig. 13. Query translation time with num-
ber of peers

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20

T
im

e
(I

n
se

cs
)

Global Query Execution Time

UA
AC

 KLM
LH
AF
AZ

Fig. 14. Global query execution time

We also investigate the algorithm performance for query translation with the
number of acquaintances. We experimented with 12 peers. We investigated the
times required to translate one query (in a peer) for all the acquainted peers.
Figure 12 gives a screenshot showing such a translation. We investigate with
different input query frequencies. We notice that the translation times increase
gradually with the number of peers and number of input queries per second. The
Figure 13 shows the result.

308 Md. M. Masud, I. Kiringa, and A. Kementsietsidis

We also investigate the execution of global queries generated from different
peers in our P2P settings. We flooded the network generating 4 queries/sec from
each peer with total 20 queries per peer. The total number of queries in the
network was 624. The result is shown in Figure 14. The figure shows that the
global queries of the KLM and LH peers finish first because they have more
acquaintances than other peers in the settings. The global queries of the UA
peer take the highest times because this peer is linked to the P2P network over
one single acquaintance (with peer AC).

8 Related Work

Ooi et al. [16] present a peer-to-peer (P2P) distributed data sharing system called
PeerDB. Query processing in PeerDB is performed through keyword matching
and ranking using agents. The keyword-matching strategy in PeerDB may give
irrelevant query reformulations because a keyword of a relation may match syn-
tactically with keywords of attributes or relations of other peers without being
a semantical match. The user must decide which queries are to be executed.
In PeerDB, continuous user involvements are required before the user fetches
required data from peers. In our approach, on the contrary, once acquaintances
are in place, the user need not worry about them at query time.

The paper [9] introduces a data model called Local Relational Model (LRM)
designed for P2P data management systems to describe relationships between
two peer databases. The acquaintances between two peers are based upon the
definition of coordination formulas and domain relations with in the system. The
main goals of the data model to support semantic interoperability in the absence
of global schema.

The Piazza system [17] provides a solution for query answering in a peer-to-
peer environment, where the associations between peers are expressed as either
global-as-view (GAV) or local-as-view (LAV) mapping. All these are schema (as
opposed to our instance) level mappings.

An approach for data coordination avoiding the assumptions of global schema
is introduced in [21]. The authors of [21] introduce the notion of group and define
it as a set of nodes, which are able to answer queries about a certain topic.
Each group has a node called Group Manager (GM), which in charge of the
management of the metadata in order to run the group [21]. According to their
proposal, each query must pass through the group manager. The paper does not
mention how to choose a node as a group manager.

9 Conclusion

In this paper we investigated a data sharing strategy through query translation
based on syntactic and instance level mappings. We addressed some translation
rules based on these mappings. Our strategy can translate a query if there is ap-
propriate correspondence assertions between the schema elements of acquainted
peers. A future work, we plan to investigate the approach as a query service

Don’t Mind Your Vocabulary 309

built on top of a large scale peer data management system. We also plan to in-
vestigate the dynamic inference of new correspondence assertions from existing
ones. Such a dynamic inference mechanism seems necessary to avoid doing so
manually when peers join/leave the system.

References

1. The JXTA Project. http://www.jxta.org
2. M. Boyd, S. Kittivoravitkul, C. Lazanitis, P. McBrien, N. Rizopoulos. AutoMed:

A BAV Data Integration System for Heterogeneous Data Sources. In CAiSE, 2004
3. R. Domenig, K.R. Dittrich. Query Explorativeness for Integrated Search in Het-

erogeneous Data Sources. In CAiSE, 2002
4. L. Serafini, F. Giunchiglia, J. Molopoulos, and P. Bernstei. Local Relational

Model:a logocal formalization of database coordination. Technical Report, In-
formatica e Telecomunicazioni, University of Trento, 2003.

5. M. Lenzerini. Data Integration: A Theoretical Prespective. In PODS, 2001.
6. R. J. Miller, L. M. Haas and M. Hernndez. Schema Mapping as Query Discovery.

In VLDB, 2000.
7. Z. Ives A. Halevy, M. Rodrig, and D. Suciu. What can databases do for peer-to

peer? in webdb. In WebDB, 2001.
8. M. Arenas, V. Kantere, A. Kementsietsidis, and I. Kiringa. The hyperion project:

From data integration to data coordination. In ACM SIGMOD RECORD, 2003.
9. P. Bernstein, F. Giunchiglia, A. Kementsietsidis, and J. Mylopulos. Data manage-

ment for peer-to-peer computing: A vision. In WebDB, 2002.
10. C.-C. K. Chang and H. Garcia-Molina. Mind your vocabulary: Query mapping

across heterogeneous information source. In SIGMOD, 1999.
11. F. Giunchiglia and I. Zaihrayeu. Making peer databases interact-a vision. In CIA,

2002.
12. A. Halevy, Z. Ives, D. Suciu, and I. Tatarinov. Schema mediation in peer data

management system. In ICDE, 2003.
13. V. Kantere, I. Kiringa, and J. Mylopoulos. Coordinating peer databases using

ECA rules. In P2P DBIS, 2003.
14. A. Kementsietsidis and M. Arenas. Data sharing through query translation in

autonomous systems. In VLDB, 2004.
15. A. Kementsietsidis, M. Arenas, and R.J. Miller. Mapping data in peer-to-peer

systems: Semantics and algorithmic issues. In SIGMOD, 2003.
16. W. S. Ng, B. C. Ooi, K. L. Tan, and A. Y. Zhou. PeerDB:A p2p-based system for

distributed data sharing. In Data Engineering, 2003.
17. I. Tatarinov, Z. Ives, J. Madhavan, A. Halevy, D. Suciu, N. Dalvi, and X. Dong.

The piazza peer data management project. In ICDE, 2003.
18. P. reynolds and A. Vahdat. Efficient peer-to-peer keyword searching. In Middle-

ware, 2003.
19. E. Franconi, G. Kuper, A. Lopatenko, and I. Zaihrayeu. The coDB Robust Peer-

to-Peer Database System. In SEDB, pages 382-393, 2004.
20. E. Franconi, G. Kuper, A. Lopatenko, and I. Zaihrayeu. Queries and Updates in

the coDB Peer to Peer Database System. In VLDB, pages 1277-1280, 2004.
21. F. Giunchiglia and I. Zaihrayeu. Making Peer Databases Interact-A vision for an

Architecture Supporting Data Coordination. In CIA, pages 18-35, 2002.

	Introduction
	Motivating Example
	Peer-to-Peer Mappings
	Mapping Tables
	Data and P2P Network Model

	Peer-to-Peer Query Semantics
	Query Translation
	Correspondence Assertion (CA)
	Translation Rule

	Query Translation Process
	Sound Translation of Queries

	Implementation
	Experimental Results

	Related Work
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

