
Journal of Computer and System Sciences 73 (2007) 610–635

www.elsevier.com/locate/jcss

First-order query rewriting for inconsistent databases

Ariel Fuxman ∗, Renée J. Miller

Department of Computer Science, University of Toronto, Canada

Received 23 January 2006; received in revised form 11 July 2006

Available online 11 December 2006

Abstract

We consider the problem of retrieving consistent answers over databases that might be inconsistent with respect to a set of
integrity constraints. In particular, we concentrate on sets of constraints that consist of key dependencies, and we give an algorithm
that computes the consistent answers for a large and practical class of conjunctive queries. Given a query q, the algorithm returns a
first-order query Q (called a query rewriting) such that for every (potentially inconsistent) database I , the consistent answers for q

can be obtained by evaluating Q directly on I .
© 2006 Published by Elsevier Inc.

Keywords: Consistent query answering; Inconsistent data; Uncertain data

1. Introduction

Consistent query answering is the problem of retrieving “consistent” answers over databases that might be incon-
sistent with respect to a set of integrity constraints. Applications that have motivated the study of this problem include
data integration and data exchange. Data integration is the problem of providing a unified view of data residing at
different sources [11]. Data exchange is the problem of restructuring data residing under a source schema and creating
an instance of a target schema that best represents the source data [7]. In both contexts, it is often the case that the
source data does not satisfy the integrity constraints of the global or target schema. The traditional approach to deal
with this situation involves “cleaning” the source instance in order to remove data that violates the target constraints.
However, data cleaning is supported by semi-automatic tools at best, and it is necessarily a human-labor intensive
process. An alternative approach would be to exchange an inconsistent instance, and employ the techniques of consis-
tent query answering to resolve inconsistencies at query time. Of course, this approach becomes viable only if efficient
tools for consistent query answering are available. In this paper, we present a number of results that are a step in this
direction.

In addition to these long-standing problems, the trend toward autonomous computing is making the need to manage
inconsistent data more acute. In autonomous environments, we can no longer assume that data are defined by a
single set of constraints that represent their semantics. As constraints are used in an increasing number of roles
(from modelling the query capabilities of a system, to defining mappings between independent sources), there is an

* Corresponding author.
E-mail addresses: afuxman@cs.toronto.edu (A. Fuxman), miller@cs.toronto.edu (R.J. Miller).
0022-0000/$ – see front matter © 2006 Published by Elsevier Inc.
doi:10.1016/j.jcss.2006.10.013

A. Fuxman, R.J. Miller / Journal of Computer and System Sciences 73 (2007) 610–635 611
increasing number of applications in which data must be used with a set of independently designed constraints. In such
applications, a static approach where consistency (with respect to a fixed set of constraints) is enforced by cleaning
the database may not be appropriate. Rather, a dynamic approach in which data is not changed, but consistency is
taken into account at query time, permits the constraints to evolve independently from the data.

The input to the consistent query answering problem is: a schema R, a set Σ of integrity constraints, and a database
instance I over R. The database I might be inconsistent, in the sense that it might violate some of the constraints of Σ .
In this work, we draw upon the concept of repairs, defined by Arenas et al. [1], to give semantics to the problem.
A repair I of I is an instance of R such that I satisfies the integrity constraints of Σ , and I differs minimally from I

(where minimality is defined with respect to the symmetric difference between I and I). Under this definition, repairs
need not be unique. Intuitively, each repair corresponds to one possible way of “cleaning” the inconsistent database.

The notion of repairs is used to give semantics to consistent query answering in the following way. Given an
instance I , a tuple �t is said to be a consistent answer for q on I if I |= q[�t], for every repair I of I . This concept
is similar to that of certain answers used in the context of data integration [2], but for consistent answers the set of
possible worlds are the repairs of the inconsistent database, rather than the legal instances of a global database.

In this work, we focus on sets of integrity constraints that consist of key dependencies. The most commonly used
constraints in database systems are keys and foreign keys. Of these, keys pose a particular challenge since instances
that are inconsistent with respect to a set of key dependencies admit an exponential number of repairs in the worst case.
This potentially large number of repairs leads to the question of whether it is possible to compute consistent answers
efficiently. The answer to this question is known to be negative in general [4,6]. However, this does not necessarily
preclude the existence of classes of queries for which the problem is easier to compute. Hence, we consider the
following question: for what queries is the problem of computing consistent answers in polynomial time (in data
complexity)?

In general, given a query q , it does not suffice to evaluate q directly on a (possibly inconsistent) instance I in order
to get the consistent answers. Therefore, a related question is: does there exist some other query Q such that for every
instance I , the consistent answers for q can be obtained by just evaluating Q on I? If Q is a first-order query, we say
that q is first-order rewritable. Since first-order queries can be written in SQL, if the query is first-order rewritable,
then its consistent answers can be retrieved (at query time) using existing commercial database technology. Given
the desirability of such an approach, we consider the question of identifying classes of queries that are first-order
rewritable.

1.1. Summary of results

The main contribution of this paper is an algorithm that produces a first-order query rewriting for the problem of
computing consistent answers. The algorithm, which is presented in Section 3, runs in linear time in the size of the
query. We prove the correctness of the algorithm for a large class of conjunctive queries. The class is defined in terms
of the join graph of the query. The join graph is a directed graph such that: its vertices are the literals of the query;
and it has an arc for each join in the query that involves some variable that is at the position of a nonkey attribute.
Our algorithm works for conjunctive queries without repeated relation symbols (but with any number of literals and
variables) whose join graph is acyclic. The queries may have projections (that is, existentially-quantified variables),
which pose a particular challenge in the context of consistent query answering. In Section 3, we argue that the class
that we handle is broad enough to include many queries that arise in practice.

In Section 4, we show that the class of queries considered in Section 3 is in fact a maximal class of queries, in
the sense that minimal relaxations of its conditions lead to intractability. We then embark on a more ambitious goal:
we present a class of queries for which the conditions of applicability of the algorithm (which can be verified in
polynomial time in the size of the query) are necessary and sufficient. That is, we show a class such that the problem
of computing the consistent answers is coNP-complete for every query of the class whose join graph has a cycle.
Notice that this type of result is much stronger than the usual approach taken in the consistent query answering
literature, which consists of showing intractability of a class by exhibiting at least one query for which the problem
is intractable. As a corollary of our result, we get a dichotomy for this class of queries: given a query q in our class,
either the problem of computing the consistent answers for q is first-order rewritable (and thus it is in PTIME), or it
is a coNP-complete problem.

612 A. Fuxman, R.J. Miller / Journal of Computer and System Sciences 73 (2007) 610–635
2. Formal framework

A schema R is a finite collection of relation symbols, each of which has an associated arity. A set of integrity con-
straints Σ consists of sentences in some logical formalism over R. An instance I over R is a function that associates
to each relation symbol R of R a relation I (R). Given a tuple �t occurring in relation I (R), we denote by R(�t) the
association between �t and R. An instance I is consistent with respect to a set of integrity constraints Σ if I satisfies
Σ in the standard model-theoretic sense, that is I |= Σ .

We adopt a semantics for consistent query answering that was originally introduced by Arenas et al. [1], and
relies upon the concept of repairs. A repair is an instance that satisfies the integrity constraints, and which has a
minimal distance to the inconsistent database. The distance between two database instances I and I ′ is defined as
their symmetric difference, i.e., �(I, I ′) = (I − I ′) ∪ (I ′ − I). The formal definition of repair is the following.

Definition 1 (Repair [1]). Let I be an instance. We say that an instance I is a repair of I with respect to Σ if1:

• I |= Σ , and
• there is no instance I ′ such that I ′ |= Σ and �(I, I ′) ⊂ �(I,I) (i.e., �(I,I) is minimal under set inclusion in

the class of instances that satisfy Σ).

Example 1. Let R be a schema with one relation symbol R. Assume that R has two attributes: E (Employee) and S

(Salary), and that the only constraint in Σ is that attribute E is the key of R. Let I = {R(John,1000),R(John,2000),

R(Mary,3000)}. We can see that I is inconsistent with respect to Σ . In particular, there is uncertainty about what
John’s salary is. There are two repairs: I1 = {(John,1000), (Mary,3000)} and I2 = {(John,2000), (Mary,3000)}.
We use the term “repair,” as opposed to “minimal repair,” because it is standard in the literature [1]. However, no-
tice that, by definition, all repairs have a minimal distance to the inconsistent database. For example, the instances
{(John,2000)} and {(Mary,3000)} are not repairs because their distance with respect to I is not minimal under set
inclusion. The minimality condition for the repairs is crucial in the definition. Otherwise, the empty set would trivially
be a repair of every instance.

The semantics for query answering is given in terms of consistent answers [1], which we define next.

Definition 2 (Consistent answer [1]). Let R be a schema. Let Σ be a set of integrity constraints. Let I be an instance
over R (possibly inconsistent with respect to Σ). Let q(�z) be a query over R. We say that a tuple �t is a consis-
tent answer for q with respect to Σ if I |= q[�z/�t], for every repair I of I with respect to Σ . We denote this as
�t ∈ consistentΣ(q, I).

Example 1 (continued). Let q1(e) = ∃s.R(e, s). The consistent answers for q1 on I are the tuples (John) and (Mary).
Let q2(e, s) = R(e, s). The only consistent answer for q2 on I is (Mary,3000). Notice that the tuples (John,1000)

and (John,2000) are not consistent answers. The reason is that neither of them are present in both repairs. Intuitively,
this reflects the fact that John’s salaries are inconsistent data.

For convenience, we will use the following notation for the consistent answers of Boolean queries.

Definition 3. Let R be a schema. Let Σ be a set of integrity constraints. Let I be an instance over R. Let q be a
Boolean query over R. We say that consistentΣ(q, I) = true if for every repair I of I with respect to Σ , I |= q .
We say that consistentΣ(q, I) = false if there exists at least one repair I of I with respect to Σ such that I 	|= q .

Notice the asymmetry between the case for consistentΣ(q, I) = true and consistentΣ(q, I) = false. While,
for the former, every repair must satisfy the query, for the latter it suffices to have just one non-satisfying repair. This
is not intrinsic to Boolean queries: by Definition 2, it is also the case that �t /∈ consistentΣ(q, I) if there exists at least
one repair I such that I 	|= q[�t].

1 Whenever Σ is clear from the context, we will just say that I is a repair of I .

A. Fuxman, R.J. Miller / Journal of Computer and System Sciences 73 (2007) 610–635 613
We will denote the problem of computing consistent answers as CONSISTENT(q,Σ), and define it as follows.

Definition 4. Let R be a schema. Let q be a query over R. Let Σ be a set of integrity constraints. The consistent query
answering problem CONSISTENT(q,Σ) is the following: given an instance I over R, and tuple �t , is it the case that
�t ∈ consistentΣ(q, I)?

We will design an algorithm that computes consistent answers directly from the inconsistent database, without
explicitly building the repairs. In fact, given a query q , the algorithm will return a first-order query Q such that, for
every instance I , the consistent answers for q can be obtained by just evaluating Q on I . We call Q a first-order query
rewriting, and define it next.

Definition 5 (First-order query rewriting). Let R be a schema. Let Σ be a set of integrity constraints. Let q(�z) be
a query over R. We say that the problem CONSISTENT(q,Σ) is first-order rewritable if there is a first-order query
Q such that I |= Q[�z/�t] iff �t ∈ consistentΣ(q, I), for every instance I over R. We also say that Q is a first-order
rewriting of CONSISTENT(q,Σ).2

Notice that if CONSISTENT(q,Σ) is first-order rewritable, then it is tractable. This is because the data complexity
of first-order logic is in PTIME (in fact, in AC0, which is a subset of PTIME). Thus, it can be tested in polynomial
time whether I |= Q[�z/�t]. Besides this, an approach based on query rewriting is attractive because first-order queries
can be written in SQL. Therefore, if the query is first-order rewritable, the consistent answers can be retrieved using
existing database technology.

Throughout the paper, we will assume that the set Σ of integrity constraints consists of one key dependency per
relation of the schema, where a key may consist of many attributes (in particular, it may contain all attributes). To
facilitate specifying the set of constraints each time that we give a query, we will underline the positions in each literal
that correspond to key attributes. Furthermore, by convention, the key attributes will be given first. For example, the
query q = ∃x, y, z.R1(x, y)∧R2(y, z) indicates that literals R1 and R2 represent binary relations whose first attribute
is the key. We will use vector notation (e.g., �x, �y) to denote vectors of variables or constants from a query or tuple. In
addition, when we give a tuple, we will underline the values that appear at the position of key attributes. For instance,
for a tuple R(�c, �d), we will say that �c is a key value, and �d is a nonkey value. Using this notation, the key constraints
of Σ that are relevant to the query are denoted directly in the query expression.

The results in this paper concern (classes of) conjunctive queries. We will adopt the convention of using �x to denote
variables and constants that appear at the position of key attributes, and �y for variables and constants that appear at
the position of nonkey attributes. Thus, conjunctive queries will be of the form:

q(z1, . . . , zl) = ∃w1, . . . ,wm.R1(�x1, �y1) ∧ · · · ∧ Rn(�xn, �yn)

where w1, . . . ,wm, z1, . . . , zl are all the variables that appear in the literals of q . We will say that z1, . . . , zm are the
free variables of q . Notice that even though there are no equality symbols in q , their effect is achieved by having
variables that appear in q more than once. The queries may also contain constants, which we will denote with bold
letters from the beginning of the alphabet (e.g., a and b). We will say that there is a join on a variable w if w appears in
two literals Ri(�xi, �yi) and Rj (�xj , �yj) such that i 	= j . If w occurs in �yi and �yj , we say that there is a nonkey-to-nonkey
join on w; if w occurs in �yi and �xj , we say that there is a nonkey-to-key join; and if w occurs in �xi and �xj , we say that
there is a key-to-key join.

Throughout the paper, we will focus on the class of conjunctive queries without repeated relation symbols. A con-
junctive query without repeated relation symbols is a conjunctive query such that every relation symbol of the schema
appears in q at most once. Notice that, in spite of this restriction, the query can still have any arbitrary number of
literals and relation symbols, and there are no constraints on the occurrence of variables in the query.

2 On occasion, we will simply say that q is first-order rewritable, and that the query Q is a first-order rewriting of q .

614 A. Fuxman, R.J. Miller / Journal of Computer and System Sciences 73 (2007) 610–635
3. A query rewriting algorithm

3.1. A class of tractable queries

The problem of computing consistent answers for conjunctive queries over databases that might violate a set of key
constraints is known to be coNP-complete in general [4,6]. This is the case even for queries with no repeated relation
symbols, which is the focus of this section. However, this does not necessarily preclude the existence of classes of
queries for which the problem is easier to compute. In fact, in this section we characterize a large and practical class
of conjunctive queries for which the problem of computing consistent answers is indeed tractable. Even more so, we
show that all queries in this class are first-order rewritable, and we give a linear-time algorithm that computes the
first-order rewriting.

Before presenting the tractable class, let us consider the following queries for which the problem of computing
consistent answers is coNP-complete, as will be shown in Section 4:

• q1 = ∃x, x′, y.R1(x, y) ∧ R2(x
′, y),

• q2 = ∃x, y.R1(x, y) ∧ R2(y, x),
• q3 = ∃x, x′,w,w′, z, z′,m.R1(x,w) ∧ R2(m,w, z) ∧ R3(x

′,w′) ∧ R4(m,w′, z′).

The queries presented above are rare in practice. The first consists of a join between nonkey attributes; the second
involves a cycle; and the third, a join with part, but not the entire key of a relation. We use these queries to provide
insight into when a query is intractable. In particular, we will show in Section 4 a class of queries for which the
presence of cycles and nonkey-to-nonkey joins are in fact necessary and sufficient conditions for intractability. Notice
that such conditions are concerned with the joins in the query where at least one nonkey variable is involved. In order
to define such conditions precisely, we will state them in terms of what we call the join graph of the query.

Definition 6 (Join graph). Let q be a conjunctive query. The join graph G of q is a directed graph such that:

• the vertices of G are the literals of q;
• there is an arc from Ri to Rj if i 	= j , and there is some variable w such that w is existentially-quantified in q ,

w occurs at the position of a nonkey attribute in Ri , and w occurs in Rj .

Notice that the free variables of a query do not introduce arcs to the join graph. As a special case, if all the variables
of a query are free, then its join graph has no arcs. Queries without existentially-quantified variables correspond to the
class of quantifier-free queries, and have already been shown to be first-order rewritable [1]. Handling queries with
existentially quantified variables (that is, projections), is one of the main challenges addressed in our work.

As we can see in Fig. 1, the join graphs of q1 and q2 have a cycle. Since computing consistent answers for these
two queries is coNP-hard, we will focus on queries whose join graph is acyclic. For example, the join graph of the
following query is acyclic. The graph is shown in Fig. 1,

q4(w) = ∃x, y, z.R1(x, y) ∧ R2(y, z) ∧ R3(z,w) ∧ R4(y,a).

Additionally, when we consider how two relations, R1 and R2, are joined, we will require that if any of the key
attributes of R1 are joined with a nonkey attribute of R2, then all of the key attributes of R1 join with nonkey attributes

Fig. 1. Join graphs.

A. Fuxman, R.J. Miller / Journal of Computer and System Sciences 73 (2007) 610–635 615
of R2. We will then say that the query has full nonkey-to-key joins. For example, all the nonkey-to-key joins of query
q4 are full. On the other hand, in the query

q3 = ∃x, x′,w,w′, z, z′,m.R1(x,w) ∧ R2(m,w, z) ∧ R3(x
′,w′) ∧ R4(m,w′, z′)

the joins between R1 and R2, and between R3 and R4, are not full since they do not involve the entire key of R2 and
R4, respectively.

Definition 7. Let q be a conjunctive query. Let Ri(�xi, �yi) and Rj (�xj , �yj) be a pair of literals of q . We say that there
is a full nonkey-to-key join from Ri to Rj if every variable of �xj appears in �yi .

We observe that if G is an acyclic join graph for a query all of whose nonkey-to-key joins are full, then G must be
a forest. We show this with the following proposition.

Proposition 1. Let q be a query all of whose nonkey-to-key joins are full. Let G be the join graph of q . If G is acyclic,
then G is a forest.

Proof. Assume towards a contradiction that G is a directed acyclic graph that is not a tree. Then, there is a node v in
G that receives arcs from two different nodes vi and vj of G. Let R(�x, �y), Ri(�xi, �yi), and Rj (�xj , �yj) be the literals
at the nodes of v, vi , and vj , respectively. Since there are arcs from vi and vj to v, there are variables wi and wj in �yi

and �yj , respectively, that appear in R. Since G is acyclic, wi and wj must appear in �x. Also, wj cannot appear in a
nonkey position of Ri (or, otherwise, there would be a cycle between the nodes vi and vj). Since there is a nonkey-to-
key join from Ri to R on variable wi , and variable wj does not occur at a nonkey position of Ri , the join is not full;
contradiction. �

We will give an algorithm for queries with an acyclic join graph and all of whose nonkey-to-key joins are full. It
follows from the previous proposition that the join graph of such queries will always be a forest. We call the class of
such queries Cforest, and define it next.

Definition 8. Let q be conjunctive query without repeated relation symbols and all of whose nonkey-to-key joins are
full. Let G be the join graph of q . We say that q ∈ Cforest if G is a forest (i.e., every connected component of G is a
tree).

A fundamental observation about Cforest is that it is a very common, practical class of queries. Arguably, the most
used forms of joins are from a set of nonkey attributes of one relation (which may be a foreign key)3 to the key of
another relation (which may be a primary key). Furthermore, such joins typically involve the entire primary key of the
relation (and, hence, they are full joins in our terms). Finally, cycles are rarely present in the queries used in practice.
Admittedly, the restriction not to have repeated relation symbols does rule out some common queries (those in which
the same relation appears twice in the FROM clause of an SQL query). Still, many queries used in practice do not have
repeated relation symbols.

3.2. Algorithm

The following examples highlight some of the intuition underlying our query rewriting algorithm.

Example 2. Let q = ∃x.R1(x,a). First of all, notice that q itself is not a query rewriting of CONSISTENT(q,Σ).
Consider instance I1 = {R1(c1, a),R1(c1, b)}. It is easy to see that I1 |= q . However, consistentΣ(q, I1) = false
because the repair I = {R1(c1, b)} is such that I 	|= q . Now, consider I2 = {R1(c1, a),R1(c1, b), R1(c2, a)}. It is easy
to see that consistentΣ(q, I2) = true. This is because there is a key value in R1 (c2 in this case) that appears with
a as its nonkey value, and does not appear with any other constant a′ such that a′ 	= a. This can be checked with

3 Notice that in this work we are not dealing with the problem of inconsistency with respect to foreign keys, but with respect to key dependencies.

616 A. Fuxman, R.J. Miller / Journal of Computer and System Sciences 73 (2007) 610–635
a formula Qconsist(x) = ∀y′.R1(x, y′) → y′ = a. In fact, we will show that a query rewriting Q for q can be obtained
as the conjunction of q and Qconsist:

Q = ∃x.R1(x,a) ∧ ∀y′.R1(x, y′) → y′ = a.

Example 3. Let q = ∃x, y, z.R1(x, y) ∧ R2(y, z). As in the previous example, q itself is not a query rewriting
of CONSISTENT(q,Σ). Consider the instance I1 = {R1(c1, d1),R1(c1, d2),R2(d1, e1)}. It is easy to see that I1 |= q .
However, consistentΣ(q, I1) = false because the repair I = {R1(c1, d2),R2(d1, e1)} is such that I 	|= q . Now, con-
sider I2 = {R1(c1, d1),R1(c1, d2),R2(d1, e1),R2(d2, e2)}. It is easy to see that consistentΣ(q, I2) = true. This is
because every nonkey value that appears together with c1 in some tuple (in this case, d1 and d2) joins with a tuple
of R2. This can be checked with a formula Qconsist(x) = ∀y.R1(x, y) → ∃z.R2(y, z). We will soon show that a query
rewriting Q for q can be obtained as the conjunction of q and Qconsist, as follows:

Q = ∃x, y, z.R1(x, y) ∧ R2(y, z) ∧ ∀y.
(
R1(x, y) → ∃z.R2(y, z)

)
.

We now proceed to present RewriteConsistent, our query rewriting algorithm (shown in Figs. 2–4). Given
a query q such that q ∈ Cforest and a set of key constraints Σ (containing one key per relation), the algorithm
RewriteConsistent(q,Σ) returns a first-order rewriting Q for the problem of obtaining the consistent answers
for q with respect to Σ . The main body of the algorithm RewriteConsistent is shown in Fig. 2. The first-order
rewriting Q that it returns is obtained as the conjunction of the input query q , and a new query called Qconsist. The
query Qconsist is used to ensure that q is satisfied in every repair (and, hence, consistentΣ(q, I) = true). It is im-
portant to notice that Qconsist will be applied directly to the inconsistent database (i.e., we will never generate the
repairs). The query Qconsist is obtained by recursion on the tree structure of each of the components of the join graph
of q (recall that since q ∈ Cforest, the join graph is a forest). The recursive algorithm is called RewriteTree, and is
shown in Fig. 3.

The first part of RewriteTree produces a rewriting Qlocal for the literal R(�x, �y) at the root of the tree. This
rewriting is done independently of the rest of the query, and it is produced by the algorithm RewriteLocal. We
show this algorithm in Fig. 4. The query Qlocal deals with the constants that appear in �y in the same way as we
illustrated in Example 2. It also deals with the free variables of the query, as we show in the next example.

Example 4. Consider the query q(y) = ∃x.R1(x, y). Notice that the only difference with the query of Example 2
is that the constant a is replaced by the free variable y. The algorithm RewriteLocal creates a new, universally-
quantified variable y′ for y, and equates y′ to y. The resulting query rewriting for q is the following:

Q(y) = ∃x.R1(x, y) ∧ ∀y′.R1(x, y′) → y′ = y.

Algorithm RewriteConsistent(q,Σ)

Input: q(�z), a query of the form ∃ �w.φ(�w, �z)
Σ , a set of key constraints, one per relation used in q

Let G be the join graph of q

Let T1, . . . , Tm be the connected components of G

for i := 1 to m do
Let Ri(�xi, �yi) be the literal at the root of Ti

Let φi be the conjunction of literals of Ti

Let �wi = {w: w is a variable that occurs in φi and �w, and w /∈ �xi}
Let �zi = {z: z is a variable that occurs in φi and �z, and z /∈ �xi}
Let qi(�xi, �zi) = ∃ �wi.φi(�xi, �wi, �zi)

Let Qi(�xi, �zi) = RewriteTree(qi,Σ)

end for
Let Qconsist(�w, �z) = ∧

i=1,...,m Qi(�xi, �zi)

Let Q(�z) = ∃ �w.(φ(�w, �z) ∧ Qconsist(�w, �z))
return Q

Fig. 2. Query rewriting algorithm.

A. Fuxman, R.J. Miller / Journal of Computer and System Sciences 73 (2007) 610–635 617
Algorithm RewriteTree(q,Σ)

Input: q(�x, �z), a query in Cforest of the form ∃ �w.φ(�x, �w, �z),
whose join graph T is a tree with root literal R(�x, �y)

Σ , a set of key constraints, one per relation

Let T be the join graph of q

Let R(�x, �y) be the literal at the root node of T

Let qlocal(�x, �z) = ∃ �w.R(�x, �y)

Let Qlocal(�x, �z) = RewriteLocal(qlocal,Σ)

if φ has exactly one literal then
Q = Qlocal

else
Let R1(�x1, �y1), . . . ,Rm(�xm, �ym) be the children of R in T

for i := 1 to m do
Let Ti be the subtree of T rooted at Ri

Let φi be the conjunction of literals of Ti

Let �wi = {w: w is a variable that occurs in φi and �w, and w /∈ �xi}
Let �zi = {z: z is a variable that occurs in φi and �z, and z /∈ �xi}
Let qi(�xi, �zi) = ∃ �wi.φi(�xi, �wi, �zi)

Let Qi(�xi, �zi) = RewriteTree(qi,Σ)

end for
Let �y0 = {y: y is a variable that occurs in �y and �w, and y /∈ �x}
Let Q(�x, �z) = Qlocal(�x, �z) ∧ ∀�y0.R(�x, �y) → ∧

i=1,...,m Qi(�xi, �zi)

end if
return Q

Fig. 3. Recursive algorithm on the tree structure of the join graph.

The second part of RewriteTree recursively creates a query Qi for each subtree Ti of T rooted at R. Let
�y0 be the variables at nonkey positions of R (excluding those that also appear in �x). Then, one of the conjuncts
of the rewritten query returned by RewriteTree is of the form ∀�y0.R(�x, �y) → ∧

i=1,...,m Qi(�xi, �zi). Notice that
thevariables of �y0 (i.e., the variables at nonkey positions of the root literal R) are universally quantified. The intuition
behind this is that, as we illustrated in Example 3, the query must be satisfied by all the nonkey values of a given key.

The next example illustrates an application of the algorithm.

Example 5. Let q be the query q4 introduced in Section 3.1,

q(w) = ∃x, y, z.R1(x, y) ∧ R2(y, z) ∧ R3(z,w) ∧ R4(y,a).

The join graph T of q is shown in Fig. 1. In this case, T consists of one connected component, which is a tree.
Let q1 be the query q1(x,w) = ∃y, z.R1(x, y) ∧ R2(y, z) ∧ R3(z,w) ∧ R4(y,a); let q2 be the query q2(y,w) =
∃z.R2(y, z) ∧ R3(z,w); let q3 be the query q3(z,w) = R3(z,w); and let q4(y) = R4(y,a). The first-order query
rewriting Q of q is obtained by applying the algorithm RewriteConsistent(q,Σ) as follows:

Q(w) = RewriteConsistent(q,Σ)

= ∃x, y, z.R1(x, y) ∧ R2(y, z) ∧ R3(z,w) ∧ R4(y,a) ∧ Qconsist(x,w),

Qconsist(x,w) = RewriteTree(q1,Σ) = ∃y.R1(x, y) ∧ ∀y.R1(x, y) → (
Q2(y,w) ∧ Q4(y)

)
,

Q2(y,w) = RewriteTree(q2,Σ) = ∃z.R2(y, z) ∧ ∀z.R2
(
y, z

) → Q3(z,w),

Q3(z,w) = RewriteTree(q3,Σ) = R3(z,w) ∧ ∀w′.
(
R3(z,w

′) → w′ = w
)
,

Q4(y) = RewriteTree(q4,Σ) = R4(y,a) ∧ ∀u′.
(
R4(y,u′) → u′ = a

)
.

Notice that we reuse variables in the rewritten queries. In particular, each existentially-quantified variable of q that
appears at a nonkey position in q is first existentially quantified, and then universally quantified in the rewriting Q.

618 A. Fuxman, R.J. Miller / Journal of Computer and System Sciences 73 (2007) 610–635
Algorithm RewriteLocal(q,Σ)

Input: q(�x, �z), a query of the form ∃ �w.R(�x, �y), where
none of the variables of �w appear in �x

Σ , a set of key constraints

Let σ be an injective function that maps natural numbers to variables not present in R

Initialize Eq as an empty set
for each position p of �y do

Let w be the variable that appears at position p of �y
Let z = σ(p)

if there is a constant d at position p of �y then
Add the equality z = d to Eq

end if
if w appears in �x or w appears in �z then

Add the equality z = w to Eq
end if
for every position p′ of �y such that p 	= p′ and w occurs in �y at position p′ do

Let z′ = σ(p′)
Add the equality z = z′ to Eq

end for
end for
if Eq 	= ∅ then

Let �y∗ be a vector of variables of the same arity as �y, and
such that if z is at position p of �y∗, then σ(p) = z

Let Qeq be the conjunction of the equalities of Eq
Let Qlocal(�x, �z) = ∃ �w.R(�x, �y) ∧ ∀�y∗.R(�x, �y∗) → Qeq

else
Let Qlocal(�x, �z) = ∃ �w.R(�x, �w)

end if
return Qlocal

Fig. 4. Query rewriting for a given literal.

Recall that we do not allow queries with repeated relation symbols in the class Cforest. We now give an example
of a query with repeated relation symbols for which our algorithm fails to give the consistent answer. Although not
addressed in this paper, it would be interesting to characterize the class of queries with repeated relation symbols for
which our algorithm is indeed correct.

Example 6. Let R be a schema with one relation r(A,B,C), where the attribute A is the key of the relation. Let q be
the query q = ∃x, y, z.r(x, y,a) ∧ r(y, z,b). If we apply our query rewriting algorithm, we obtain the following:

Q = ∃x, y, z.r(x, y,a) ∧ r(y, z,b) ∧ ∀y′, z′.
(
r(x, y′, z′) → z′ = a

)

∧ ∀y.
(
r(x, y,a) → ∃z.r(y, z,b) ∧ ∀z′,w′.

(
r(y, z′,w′) → z′ = b

))
.

Let I = {r(c, d, a), r(d, e, b), r(d, f, a), r(f , g, b)}. In this case, there are two repairs I1 = {r(c, d, a), r(d, e, b),

r(f , g, b)} and I2 = {r(c, d, a), r(d, f, a), r(f , g, b)}. Clearly, I1 |= q and I2 |= q . However, I 	|= Q.

We finish this section by pointing out that the complexity of the query rewriting algorithm is linear in the number
of literals of the input query. To see this, notice that the algorithm visits each node of the join graph exactly once.

3.3. Correctness proof

In this section, we show that the algorithm presented in the previous section is correct for all queries in the class
Cforest. In particular, we prove the following theorem.

A. Fuxman, R.J. Miller / Journal of Computer and System Sciences 73 (2007) 610–635 619
Theorem 1. Let R be a schema. Let Σ be a set of integrity constraints, consisting of one key dependency per relation
of R. Let q(�z) be a conjunctive query over R such that q ∈ Cforest. Let Q(�z) be the first-order query returned by
RewriteConsistent(q,Σ). Let I be an instance over R.

Then, I |= Q(�z)[�z/�t] iff �t ∈ consistentΣ(q, I).

Our proofs rely on a few simple properties of repairs of inconsistent databases where the set of integrity constraints
contain a single key dependency per relation. We establish these properties in Section 3.3.1. We use these properties
to prove the correctness of RewriteLocal (Section 3.3.2). RewriteLocal considers queries without joins (i.e.,
with a single literal), but with arbitrary selections, and with projections on any subset of the nonkey attributes (more
precisely, any of the nonkey attributes may be projected out of the query result). We consider here only equality
selections, but it is quite easy to see how to extend this algorithm to more general selection conditions.

In Section 3.3.3, we show two structural properties that are fundamental in order to guarantee the correctness of
the algorithm. First, we show that for queries in Cforest, the literals from distinct trees of the join graph may only share
variables that appear as key attributes at the root of their trees. Second, we consider a subclass of Cforest, where the
join graph of the queries is a single tree, and in which the free variables are exactly the variables at the key of the
root of this tree. For this class of queries, we show that for any inconsistent instance I , there is a repair M such that
if M |= q(�x)[�x/�c], then consistentΣ(q(�x)[�x/�c], I) = true. This enables the algorithm to independently consider
each instantiation of the variables for the key of the root literal. Finally, in Section 3.3.4, we prove the correctness of
the RewriteTree and RewriteConsistent algorithms.

3.3.1. Properties of repairs
We first show a few important properties of repairs when the set of integrity constraints consist of one key depen-

dency per relation.

Proposition 2. Let I be an instance. Let I be a repair of I wrt Σ . Then I ⊆ I .

Proof. Let I ′ be an instance such that I ′ |= Σ . Assume that there is a tuple �t such that �t ∈ I ′ and �t /∈ I . Let I ′′ =
I ′ − {�t}. It is easy to see that by removing tuples from an instance, we do not introduce violations with respect to a set
of key dependencies. Hence, I ′′ |= Σ . Clearly, �(I, I ′′) ⊂ �(I, I ′). Therefore, I ′ is not a repair of I wrt Σ . �
Proposition 3. Let I be an instance. Let I be a repair of I wrt Σ . Let R(�c, �d) be a tuple of I . Then, there exists some
�d ′ such that R(�c, �d ′) is a tuple of I .

Proof. Let I ′ be an instance such that I ′ |= Σ and R(�c, �d ′) /∈ I ′, for every �d ′. Let I ′′ = I ′ ∪ {R(�c, �d)}. Since
R(�c, �d ′) /∈ I ′ for every �d ′, I ′′ |= Σ . Clearly, �(I, I ′′) = �(I, I ′) − {R(�c, �d)}. Since �(I, I ′′) ⊂ �(I, I ′), I ′ is not
a repair of I wrt Σ . �
Proposition 4. Let I be an instance. Let R(�c, �d) be a tuple of I . Then, there exists some repair I of I such that
R(�c, �d) ∈ I .

Proof. Let I∗ be a repair of I wrt Σ . By Proposition 3, there exists �d ′ such that R(�c, �d ′) ∈ I∗. Let I ′ =
I∗ − {R(�c, �d ′)} ∪ {R(�c, �d)}. Since I∗ is a repair, I∗ |= Σ . Since I ′ does not introduce any violation to the key
dependencies of Σ , I ′ |= Σ . Assume that I ′ is not a repair of I . Then, there exists a repair I∗∗ of I such that
�(I,I∗∗) ⊂ �(I, I ′). By Proposition 2, I∗ ⊆ I , and thus I ′ ⊂ I . Furthermore, by Proposition 2, I∗∗ ⊆ I . Thus,
I − I∗∗ ⊂ I − I ′. Therefore, I ′ ⊂ I∗∗. Let I ′′ = I∗∗ − {R(�c, �d)} ∪ {R(�c, �d ′)}. Clearly, I∗ ⊂ I ′′. Thus, I∗ is not a
repair; contradiction. �
3.3.2. Correctness of RewriteLocal

We now give a correctness proof of RewriteLocal, the algorithm that produces a rewriting for a query with a
single literal where all key attributes (�x) are free in the query.

Lemma 1. Let q(�x, �z) be a query of the form ∃ �w.R(�x, �y). Let I be an instance. Let Qlocal(�x, �z) be the first-order
query returned by RewriteLocal(q,Σ).

Then, I |= Qlocal(�x, �z)[�x/�c][�z/�t] iff consistentΣ(q(�x, �z)[�x/�c][�z/�t], I) = true.

620 A. Fuxman, R.J. Miller / Journal of Computer and System Sciences 73 (2007) 610–635
Proof. (⇒) Assume that I |= Qlocal(�x, �z)[�x/�c][�z/�t]. Then, there is a tuple R(�c, �d) such that
{R(�c, �d)} |= ∃ �w.R(�x, �y)[�x/�c][�z/�t]. Assume towards a contradiction that consistentΣ(∃ �w.R(�x, �y)[�x/�c][�z/�t], I) =
false. Then, there is some repair I such that I 	|= ∃ �w.R(�x, �y)[�x/�c][�z/�t]. By Proposition 3, there is a tuple R(�c, �d ′)
in I .

Following the construction of Qlocal in RewriteLocal, let σ be an injective function that maps natural numbers
to variables not present in R. Let �y∗ be a vector of variables of the same arity as �y and such that if z is at position p

of �y∗, then σ(p) = z. Let ν and ν′ be valuations for the variables of �x and �y∗ such that ν(�x) = �c, ν(�y∗) = �d , ν′(�x) = �c,
and ν′(�y∗) = �d ′.

Since {R(�c, �d)} |= ∃ �w.R(�x, �y)[�x/�c][�z/�t] and {R(�c, �d ′)} 	|= ∃ �w.R(�x, �y)[�x/�c][�z/�t], there is some variable z at some
position p of �y∗ such that

(1) ν(z) 	= ν′(z), and there is a constant at position p in �y; or
(2) ν(z) 	= ν′(z), and there is some variable w such that w occurs at position p of �y, and w occurs in either �x or �z; or
(3) there are variables w and z′, and a position p′ such that w occurs at position p of �y, w occurs at position p′ of �y,

p 	= p′, z′ = σ(p′), and ν′(z) 	= ν′(z′).

Assume (1) that there is a constant d at position p in �y. Since {R(�c, �d)} |= ∃ �w.R(�x, �y)[�x/�c][�z/�t], ν(z) = d . Since
ν(z) 	= ν′(z), there is a constant d ′ such that d 	= d ′ and ν′(z) = d ′. Notice in the algorithm RewriteLocal
that since I |= Qlocal(�x, �z)[�x/�c][�z/�t], we have that I |= ∀�y∗.R(�x, �y∗) → z = d . Since I ⊆ I , R(�c, �d ′) ∈ I . Thus,
{R(�c, �d ′)} |= ∀�y∗.R(�x, �y∗) → z = d . Therefore, ν′(z) = d ; contradiction.

Assume (2) that there is some variable w such that w occurs at position p of �y, and w occurs in either �x or in �z. Let
c = ν(w). Since {R(�c, �d)} |= ∃ �w.R(�x, �y∗)[�x/�c][�z/�t], ν(z) = c. Since ν(z) 	= ν′(z), ν′(z) 	= c. Notice in the algorithm
RewriteLocal that since I |= Qlocal(�x, �z)[�x/�c][�z/�t], we have that I |= ∀�y∗.R(�x, �y∗) → z = w[w/c]. Since I ⊆ I ,
R(�c, �d ′) ∈ I . Thus, {R(�c, �d ′)} |= ∀�y∗.R(�x, �y∗) → z = w[w/c]. Therefore, ν′(z) = c; contradiction.

Assume (3) that there are variables w and z′, and a position p′ such that w occurs at position p of �y, w occurs
at position p′ of �y, p 	= p′, z′ = σ(p′), and ν′(z) 	= ν′(z′). Notice in the algorithm RewriteLocal that since
I |= Qlocal(�x, �z)[�x/�c][�z/�t], we have that I |= ∀�y∗.R(�x, �y∗) → z = z′. Since I ⊆ I , R(�c, �d ′) ∈ I . Thus,
{R(�c, �d ′)} |= ∀�y∗.R(�x, �y∗) → z = z′. Therefore, ν′(z) = ν′(z′); contradiction.

(⇐) Assume that consistentΣ(q(�x, �z)[�x/�c][�z/�t], I) = true. Assume towards a contradiction that
I 	|= Qlocal(�x, �z)[�x/�c][�z/�t]. Then, at least one of the following conditions holds:

(1) I 	|= ∃ �w.R(�x, �y)[�x/�c][�z/�t]; or
(2) there is a constant d at position p in �y and a variable z such that z = σ(p) and

I 	|= ∀�y∗.R(�x, �y∗) → z = d[�x/�c][�z/�t]; or
(3) there is some variable w such that w occurs at position p of �y, w occurs in either �x or �z, and I 	|= ∀�y∗.R(�x, �y∗) →

z = w[�x/�c][�z/�t]; or
(4) there is some variable w that occurs at position p of �y, and at a position p′ of �y such that p 	= p′, σ(p) = z,

σ(p′) = z′ and I 	|= ∀�y∗.R(�x, �y∗) → z = z′[�x/�c][�z/�t].

Assume that I 	|= ∃ �w.R(�x, �y)[�x/�c][�z/�t]. Let I be an arbitrary repair of I . Since I ⊆ I , I 	|= ∃ �w.R(�x, �y)[�x/�c][�z/�t];
contradiction.

Suppose that I |= ∃ �w.R(�x, �y)[�x/�c][�z/�t]. Furthermore, assume that there is a constant d at position p in �y and a
variable z such that z = σ(p) and I 	|= ∀�y∗.R(�x, �y∗) → z = d[�x/�c][�z/�t]. Then, there is a tuple R(�c, �d) in I such that
{R(�c, �d)} 	|= ∀�y∗.R(�x, �y∗) → z = d[�x/�c][�z/�t]. This means that there is some constant e at position p of �d such that
d 	= e. Thus, {R(�c, �d)} 	|= ∃ �w.R(�x, �y)[�x/�c][�z/�t]. By Proposition 4, there is a repair I of I such that R(�c, �d) ∈ I . As-
sume that I |= ∃ �w.R(�x, �y)[�x/�c][�z/�t]. Let R(�c, �d ′) be a tuple of I such that {R(�c, �d ′)} |= ∃ �w.R(�x, �y)[�x/�c][�z/�t]. Since
I is a repair of I , I satisfies the key constraints of Σ . Thus, �d = �d ′. Therefore, {R(�c, �d)} |= ∃ �w.R(�x, �y)[�x/�c][�z/�t];
contradiction.

Suppose that I |= ∃ �w.R(�x, �y)[�x/�c][�z/�t]. Furthermore, assume that there is some variable w such that w occurs
at position p of �y, w occurs in either �x or �z, and I 	|= ∀�y∗.R(�x, �y∗) → z = w[�x/�c][�z/�t]. Then, there is a tuple
R(�c, �d) in I such that {R(�c, �d)} 	|= ∀�y∗.R(�x, �y∗) → z = w[�x/�c][�z/�t]. Let ν be a valuation for the variables of �x and

A. Fuxman, R.J. Miller / Journal of Computer and System Sciences 73 (2007) 610–635 621
�z such that ν(�x) = �c and ν(�z) = �t . Let c = ν(w). Then, there is some constant e at position p of �d such that c 	= e.
Thus, {R(�c, �d)} 	|= ∃ �w.R(�x, �y)[�x/�c][�z/�t]. By Proposition 4, there is a repair I of I such that R(�c, �d) ∈ I . Assume
that I |= ∃ �w.R(�x, �y)[�x/�c][�z/�t]. Let R(�c, �d ′) be a tuple of I such that {R(�c, �d ′)} |= ∃ �w.R(�x, �y)[�x/�c][�z/�t]. Since
I is a repair of I , I satisfies the key constraints of Σ . Thus, �d = �d ′. Therefore, {R(�c, �d)} |= ∃ �w.R(�x, �y)[�x/�c][�z/�t];
contradiction.

Suppose that I |= ∃ �w.R(�x, �y)[�x/�c][�z/�t]. Furthermore, assume that there is some variable w that occurs at position
p of �y, and at a position p′ of �y such that p 	= p′, σ(p) = z, σ(p′) = z′ and I 	|= ∀�y∗.R(�x, �y∗) → z = z′[�x/�c][�z/�t].
Then, there is a tuple R(�c, �d) in I such that {R(�c, �d)} 	|= ∀�y∗.R(�x, �y∗) → z = z′[�x/�c][�z/�t]. Let ν be a valuation for the
variables of �y∗ such that ν(�y∗) = �d . Then, there are constants d and e at the respective positions p and p′ of �d such that
d 	= e. Thus, {R(�c, �d)} 	|= ∃ �w.R(�x, �y)[�x/�c][�z/�t]. By Proposition 4, there is a repair I of I such that R(�c, �d) ∈ I . As-
sume that I |= ∃ �w.R(�x, �y)[�x/�c][�z/�t]. Let R(�c, �d ′) be a tuple of I such that {R(�c, �d ′)} |= ∃ �w.R(�x, �y)[�x/�c][�z/�t]. Since
I is a repair of I , I satisfies the key constraints of Σ . Thus, �d = �d ′. Therefore, {R(�c, �d)} |= ∃ �w.R(�x, �y)[�x/�c][�z/�t];
contradiction. �
3.3.3. Structural properties of Cforest

In the next lemma, we show a structural property of the queries in Cforest that is fundamental in order to guarantee
the correctness of the algorithm. In particular, we show that distinct trees of the join graph may only share free
variables (which do not contribute arcs to the join graph) or variables that appear as key attributes at the root of their
trees.

Lemma 2. Let q(�z) be a query such that q ∈ Cforest. Let G be the join graph of q . Let Ti and Tj be distinct connected
components of G. Let Ri(�xi, �yi) and Rj(�xj , �yj) be the literals at the roots of Ti and Tj , respectively. Let w be a
variable that occurs in a literal of both Ti and Tj . Then, either w is free (w ∈ �z) or w is in the key of the roots of both
trees (w ∈ �xi ∩ �xj).

Proof. Let �wi = {w: w is a variable that occurs in some literal of Ti , w /∈ �xi and w /∈ �z}. Let �wj = {w: w is a variable
that occurs in some literal of Tj , w /∈ �xj and w /∈ �z}. Assume that there is some variable w such that w appears in �wi

and �wj . Let S1(�u1, �v1) and S2(�u2, �v2) be literals of Ti and Tj , respectively, such that w appears in S1 and S2. We must
now consider the next two cases. First, suppose that w occurs in �v1. Then, by definition of join graph, there is an arc
from S1 to S2 in G. But S1 and S2 are in distinct connected components of G; contradiction. Second, suppose that w

occurs in �u1. By definition of wi , S1 is not at the root of Ti (i.e., S1 	= Ri). Hence, there must be a nonkey-to-key join
from another literal, S3(�u3, �v3), in Ti to S1. Since q is in Cforest, all the nonkey-to-key joins of q are full. Thus, the
variable w also appears in a nonkey position in �v3. Hence, there must be an arc in the join graph from S3 to S2. But
S2 and S3 are in distinct connected components of G; contradiction. �

In Lemma 3 below, we show the following result. Let q(�x) be a query in Cforest, whose join graph T is a tree, and
where the free variables �x are exactly the variables of the key of T ’s root. Let I be an instance. We show that there is a
repair M of I such that for all �c, if M |= q(�x)[�x/�c], then consistentΣ(q(�x)[�x/�c], I) = true. This is a fundamental
property for the following reason. Consider a Boolean query q = ∃�x, �w.φ(�x, �w) and a query q ′(�x) = ∃ �w.φ(�x, �w).
That is, q and q ′ have the same literals, but some of the (existentially-quantified) variables of q are free in q ′. Suppose
that we would like to check whether consistentΣ(q, I) = true. This holds if, for every repair I of I , I |= q . In
particular, since M is a repair of I , M |= q . Thus, there is some �c such that M |= q ′(�x)[�x/�c]. By Lemma 3 below,
it follows that consistentΣ(q ′(�x)[�x/�c], I) = true. This property will be exploited in the design of our algorithms in
order to check the consistency of each tuple of �x independently. Notice that the property does not hold in general for
conjunctive queries, as we show in the next example. However, it does hold for the queries that satisfy the conditions
of Lemma 3.

Example 7. Let qnk be the Boolean query ∃x, x′, y.R1(x, y) ∧ R2(x
′, y). Notice that qnk is not in Cforest because it

contains a nonkey-to-nonkey join. Let I be an instance such that I = {R1(a1, b1),R1(a1, b2),R1(a2, b3),R1(a2, b4),

R1(a3, b5),R1(a3, b3),R2(c1, b1),R2(c1, b3),R2(c2, b4),R2(c2, b5),R2(c3, b2),R2(c3, b3)}. It can be checked that
for every repair I of I , I |= qnk .

622 A. Fuxman, R.J. Miller / Journal of Computer and System Sciences 73 (2007) 610–635
Now, consider the query q ′
nk(x) = ∃x′, y.R1(x, y) ∧ R2(x

′, y). That is, qnk and q ′
nk only differ in the fact

that x is existentially-quantified in the former, and free in the latter. Let I1 be repair of I such that I1 =
{R1(a1, b1),R1(a2, b3),R1(a3, b5),R2(c1, b3),R2(c2, b4),R2(c3, b3)}. Let I2 be a repair of I such that I2 =
{R1(a1, b1),R1(a2, b3),R1(a3, b5),R2(c1, b1),R2(c2, b4),R2(c3, b2)}. Notice that (a1) /∈ q ′

nk(I1), (a2) /∈ q ′
nk(I2),

and (a3) /∈ q ′
nk(I1). Thus, even though consistentΣ(qnk, I) = true, we have that consistentΣ(q ′

nk(x)[x/a], I) =
false, for every a. Therefore, it is not possible to check whether consistentΣ(qnk, I) = true by independently
checking all instantiations of the free variables of q ′

nk .

Lemma 3. Let q(�x) be a query in Cforest, whose join graph T is a tree and where R(�x, �y) is the literal at
the root of T . Let I be an instance. Then, there is a repair M such that for all �c if M |= q(�x)[�x/�c], then
consistentΣ(q(�x)[�x/�c], I) = true.

Algorithm BuildRepair
Input: q(�x), a query in Cforest of the form ∃ �w.φ(�w, �x),

whose join graph T is a tree with root literal R(�x, �y)

Σ , a set of key constraints, one per relation
I , an instance

Initialize M as an empty instance
if φ has exactly one literal then

for each �c such that there is some R(�c, �d) in I do
if there is some �d such that R(�c, �d) ∈ I ,

and {R(�c, �d)} 	|= ∃ �w.R(�x, �y)[�x/�c] then
Let �t = R(�c, �d)

else
Let �t be any tuple of I such that �t = R(�c, �d), for some �d

end if
Add �t to M

end for
else

/* φ has more than one literal*/
Let S1, . . . , Sm be the children of R in T

for j := 1 to m do
Let Tj be the subtree of T whose root is Sj

Let φj be the conjunction of literals of Tj

Let �wj = {w: w is a variable that occurs in φj and �w, and w /∈ �xj }
Let qj (�xj) = ∃ �wj .φj (�xj , �wj)

Let Mj = BuildRepair(qj , I)

Add Mj to M
end for
for each �c such that there is some R(�c, �d) in I do

if there is some �d , some j , some valuation ν for the variables of �y,
and some �cj such that R(�c, �d) ∈ I , ν(�y) = �d , ν(�xj) = �cj , and
Mj 	|= qj (�xj)[�xj /�cj] then
Let �t = R(�c, �d)

else
Let �t be any tuple of I such that �t = R(�c, �d), for some �d

end if
Add �t to M

end for
end if

Fig. 5. Algorithm BuildRepair.

A. Fuxman, R.J. Miller / Journal of Computer and System Sciences 73 (2007) 610–635 623
Proof. Let M be the instance built by invoking the procedure BuildRepair(q, I) given in Fig. 5. Assume that q

is of the form q(�x) = ∃ �w.φ(�w, �x). We will prove the claim by induction on the number of literals of φ.

Base case. Assume that φ consists of exactly one literal R(�x, �y). Let �t be the tuple selected by the algorithm in
the iteration for literal R and the vector of values �c. Assume towards a contradiction that consistentΣ(∃ �w.R(�x, �w)

[�x/�c], I) = false. Then, there is some repair I of I such that I 	|= ∃ �w.R(�x, �y)[�x/�c]. Since �t ∈ I and I is a repair
of I , by Proposition 3, there is some tuple �t ′ in I and some �d ′ such that �t ′ = R(�c, �d ′). Since I 	|= ∃ �w.R(�x, �y)[�x/�c],
we have that {�t ′} 	|= ∃ �w.R(�x, �y)[�x/�c].

Notice that �t and �t ′ can be added to M only during the iteration for the vector of values �c. Since
{�t} |= ∃ �w.R(�x, �y)[�x/�c] and {�t ′} 	|= ∃ �w.R(�x, �y)[�x/�c], the algorithm never selects tuple �t . But �t ∈M; contradiction.

Inductive step. Assume that φ has more than one literal. Let T1, . . . , Tm be the subtrees of T such that the root of
Tj is a child of the root of T , for 1 � j � m. For each 1 � j � m, let Sj (�xj , �yj) be the literal at the root of Tj . Let
φj be the conjunction of the literals of Tj . Let �wj = {w: w is a variable of φj , and w /∈ �xj }. Let qj = φj (�xj , �wj). Let
Mj = BuildRepair(φj , I).

Assume that M |= q(�x)[�x/�c]. Let �t be the tuple of I selected by the algorithm in the iteration for literal R and
the vector of values �c. Then, �t ∈ M, and there is some �d such that �t = R(�c, �d). Since M |= q(�x)[�x/�c], we have that
for every j such that 1 � j � m, there is some valuation ν for the variables of �y, and some �cj such that ν(�y) = �d ,
ν(�xj) = �cj , and Mj |= qj (�xj)[�xj /�cj].

Assume towards a contradiction that consistentΣ(q(�x)[�x/�c], I) = false. Then, there is some repair I of I such
that I 	|= q(�x)[�x/�c]. Since �t ∈ I and I is a repair of I , by Proposition 3, there is some tuple �t ′ in I and some �d ′ such
that �t ′ = R(�c, �d ′). By Lemma 2, none of the variables of �wi appear in �wj , for every i and j such that i 	= j , 1 � i � m,
1 � j � m. Thus, there is some j , some valuation ν for the variables of �y, and some tuple of values �c′

j such that
1 � j � m, I 	|= qj (�xj)[�xj /�c′

j], ν(�y) = �d ′, and ν(�xj) = �c′
j . Thus, consistentΣ(qj (�xj)[�xj /�c′

j], I) = false. By in-

ductive hypothesis Mj 	|= qj (�xj)[�xj /�c′
j]. Since Mj |= qj (�xj)[�xj /�cj], the algorithm never selects �t in the construction

of M. But �t ∈M; contradiction. �
3.3.4. Correctness of RewriteTree and RewriteConsistent

Consider a Boolean query q = ∃�x, �w.φ(�x, �w) and a query q ′(�x) = ∃ �w.φ(�x, �w). That is, q and q ′ have the
same literals, but some of the (existentially-quantified) variables of q are free in q ′. In Lemma 3 above, we
showed that if q ′ is in a certain class of conjunctive queries, then there is a repair M such that for all �c, if
M |= q ′(�x)[�x/�c], then consistentΣ(q ′(�x)[�x/�c], I) = true. We also argued that this fact implies that, in order to
check whether consistentΣ(q, I) = true, it suffices to find some instantiation �c for the free variables of q ′ such
that consistentΣ(q ′(�x)[�x/�c], I) = true. The latter condition is fundamental in the design of our algorithm since it
can be checked with a first-order query directly on the inconsistent instance I . In the next lemma, we show that the
algorithm RewriteTree, the main building block of RewriteConsistent, produces a first-order query that
checks precisely this condition.

Lemma 4. Let q(�x, �z) be a query in Cforest whose join graph T is a tree with root literal R(�x, �y). Let I be an instance.
Let Q(�x, �z) be the first-order query returned by RewriteTree(q,Σ).

Then, I |= Q(�x, �z)[�x/�c][�z/�t] iff consistentΣ(q(�x, �z)[�x/�c][�z/�t], I) = true.

Proof. The proof is by induction on the number of literals of q .

Base case. Assume that q has exactly one literal. Then, q(�x, �z) = ∃ �w.R(�x, �y), and Q = RewriteLocal(q,Σ).
By Lemma 1, we have that I |= Q(�x, �z)[�x/�c][�z/�t] iff consistentΣ(q(�x, �z)[�x/�c][�z/�t], I) = true.

Inductive step. Let R1(�x1, �y1), . . . ,Rm(�xm, �ym) be the children of R in T . Assume that q is of the form ∃ �w.φ(�w, �z),
where φ is a conjunction of literals. For each 1 � i � m, let Ti be the tree whose root is Ri . Let φi be the conjunction
of the literals of Ti . Let �wi = {w: w is a variable that occurs in φi and �w, and w /∈ �xi}. Let �zi = {z: z is a variable
that occurs in φi and �z, and z /∈ �xi}. Let qi(�xi, �zi) = ∃ �wi.φi(�xi, �wi, �zi). Let Qi(�xi, �zi) = RewriteTree(qi,Σ). Let
qlocal(�x, �z) = ∃ �w.R(�x, �y). Let Qlocal(�x, �z) = RewriteLocal(qlocal,Σ).

624 A. Fuxman, R.J. Miller / Journal of Computer and System Sciences 73 (2007) 610–635
(⇒) Assume that I |= Q(�x, �z)[�x/�c][�z/�t]. Then, there is a valuation ν for the variables of φ such that:

(1) ν(�x) = �c, and
(2) ν(�z) = �t , and
(3) I |= Qlocal(�x, �z)[ν], and
(4) for every i such that 1 � i � m, there are �ci and �ti such that ν(�xi) = �ci , ν(�zi) = �ti , and I |= Qi(�xi, �zi)[�xi/�ci][�zi/�ti].

Let I be a repair of I . Assume towards a contradiction that I 	|= ∃ �w.R(�x, �y)[�x/�c][�z/�t]. Then,
consistentΣ(∃ �w.R(�x, �y)[�x/�c][�z/�t], I) = false. By Lemma 1, we have that I 	|= Qlocal(�x, �z)[ν]; contradiction.

Assume that I |= ∃ �w.R(�x, �y)[�x/�c][�z/�t]. By Lemma 2, none of the variables of �wi appear in �wj , for every i and j

such that i 	= j , 1 � i � m, 1 � j � m. Then, I 	|= qi(�xi, �zi)[�xi/�ci][�zi/�ti] for some i such that 1 � i � m. Thus,
consistentΣ(qi(�xi, �zi)[�xi/�ci][�zi/�ti], I) = false. By inductive hypothesis, I 	|= Qi(�xi, �zi)[�xi/�ci][�zi/�ti]; contradic-
tion.

(⇐) Assume that consistentΣ(q(�x, �z)[�x/�c][�z/�t], I) = true. Assume towards a contradiction that I 	|= Q(�x, �z)
[�x/�c][�z/�t]. Let ν be a valuation for the variables of φ such that ν(�x) = �c and ν(�z) = �t . By Lemma 2, none of the vari-
ables of �wi appear in �wj , for every i and j such that i 	= j , 1 � i � m, 1 � j � m. Then, either (1) I 	|= Qlocal(�x, �z)[ν];
or (2) there is some i such that I 	|= Qi(�xi, �zi)[ν].

Assume that I 	|= Qlocal(�z)[ν]. By Lemma 1, consistentΣ(∃ �w.R(�x, �y)[�x/�c][�z/�t], I) = false. Thus, it is
the case that consistentΣ(q(�x, �z)[�x/�c][�z/�t], I) = false; contradiction. Assume that there is some i such that
I 	|= Qi(�xi, �zi)[ν]. By inductive hypothesis, consistentΣ(qi(�xi, �zi)[�xi/�ci][�zi/�ti], I) = false. Thus, it is the case
that consistentΣ(q(�x, �z)[�x/�c][�z/�t], I) = false; contradiction. �

We are now ready to give the correctness proof of our rewriting algorithm, for all queries in class Cforest. The in-
tuition of the proof is the following. Assume that we are given a query q such that q is in Cforest. Then, each of the
connected components of the join graph of q is a tree. Recall that RewriteTree, the algorithm for which we proved
correctness in the above lemma, requires that the input query satisfies the following conditions. First, the join graph
of the query must be a tree. Second, the free variables of the query must include all the variables at key positions
of the literal at the root of this tree. In order to be able to use RewriteTree, RewriteConsistent produces
a subquery for each tree of the join graph such that the variables at the key of the corresponding tree root are free.
In this way, a first-order rewriting can be produced for each subquery by invoking the algorithm RewriteTree.
For each i, let Qi(�xi, �zi) be the rewriting obtained by invoking RewriteTree(qi,Σ). The query returned by
RewriteConsistent has the form Q(�z) = ∃ �w.(φ(�w, �z)∧∧

i=1,...,m Qi(�xi, �zi)), where φ(�w, �z) is the conjunction
of literals of the original query q , and the variables of each �xi are in �w. The correctness of this formula relies on the
structural properties proved in Section 3.3.3. First, by Lemma 3, it suffices to find one instantiation for the variables
of each �xi . Thus, the variables of �xi can be free in Qi . Second, the subqueries do not share existentially-quantified
variables. This is ensured by the structural property proved in Lemma 2.

Theorem 1. Let R be a schema. Let Σ be a set of integrity constraints, consisting of one key dependency per relation
of R. Let q(�z) be a conjunctive query over R such that q ∈ Cforest. Let Q(�z) be the first-order query returned by
RewriteConsistent(q,Σ). Let I be an instance over R.

Then, I |= Q(�z)[�z/�t] iff �t ∈ consistentΣ(q, I).

Proof. Let G be the join graph of q . Since q ∈ Cforest, G is a forest. Let T1, . . . , Tm be the connected components
(trees) of G. Assume that q is of the form ∃ �w.φ(�w, �z), where φ is a conjunction of literals. For each 1 � i � m,
let Ri(�xi, �yi) be the literal at the root of Ti . Let φi be the conjunction of the literals of Ti . Let �wi = {w: w is a
variable that occurs in φi and �w, and w /∈ �xi}. Let �zi = {z: z is a variable that occurs in φi and �z, and z /∈ �xi}. Let
qi(�xi, �zi) = ∃ �wi.φi(�xi, �wi, �zi). Let Qi(�xi, �zi) = RewriteTree(qi,Σ).

(⇒) Assume that I |= Q(�z)[�z/�t]. Then, there is a valuation ν for the variables of φ such that:

(1) ν(�z) = �t , and
(2) I |= φ(�w, �z)[ν], and
(3) for every i such that 1 � i � m, there are �ci and �ti such that ν(�xi) = �ci , ν(�zi) = �ti , and I |= Qi(�xi, �zi)[�xi/�ci][�zi/�ti].

A. Fuxman, R.J. Miller / Journal of Computer and System Sciences 73 (2007) 610–635 625
Let I be a repair of I . Assume towards a contradiction that I 	|= q[�z/�t]. Thus, I 	|= q[ν]. By Lemma 2,
none of the variables of �wi appear in �wj , for every i and j such that i 	= j , 1 � i � m, 1 � j � m. Then,
I 	|= qi(�xi, �zi)[�xi/�ci][�zi/�ti] for some i such that 1 � i � m. Thus, consistentΣ(qi(�xi, �zi)[�xi/�ci][�zi/�ti], I) = false.
By Lemma 4, I 	|= Qi(�xi, �zi)[�xi/�ci][�zi/�ti]; contradiction.

(⇐) Assume that �t ∈ consistentΣ(q, I). Assume towards a contradiction that I 	|= Q(�z)[�z/�t]. Let ν be a val-
uation for the variables of φ such that ν(�z) = �t . Then, either (1) I 	|= q(�z)[ν]; or (2) there is some i such that
I 	|= Qi(�xi, �zi)[ν].

We will build a repair M of I as follows. For each i, let Ii be the projection of I on the relation symbols of φi . By
Lemma 3, there is a repair Mi such that if Mi |= qi(�xi)[�xi/�ci], then consistentΣ(qi(�xi)[�xi/�ci], Ii) = true. We add
all the tuples of Mi to M.

We now show that M 	|= q(�z)[ν]. Assume that I 	|= q(�z)[ν]. Since M ⊆ I , M 	|= q(�z)[ν]. Now, assume that
there is some i such that 1 � i � m and I 	|= Qi(�xi, �zi)[ν]. By Lemma 4, consistentΣ(qi(�xi, �zi)[ν], I) = false. By
Lemma 3, Mi 	|= qi(�xi, �zi)[ν]. Thus, M 	|= q(�z)[ν].

So, for every valuation ν such that ν(�z) = �t , we have that M 	|= q(�z)[ν]. Thus, �t /∈ consistentΣ(q, I); contradic-
tion. �
4. Intractability results

In the previous section, we presented a query rewriting algorithm that works on a class of queries with full nonkey-
to-key joins and whose join graph is a forest. In this section, we show that this is a maximal class of queries. First,
we show that minimal relaxations of the conditions of the class lead to intractability. Second, we embark on a more
ambitious goal: for a large class of conjunctive queries, we show that the conditions of Cforest are not only sufficient,
but they are also necessary conditions for a query to be first-order rewritable.

4.1. Minimal relaxations of Cforest

In this section, we show that minimal relaxations of the conditions of Cforest lead to intractability. In particular, we
show the intractability of the problem of computing consistent answers for: (1) a conjunctive query whose join graph
is a cycle of length two; and (2) a conjunctive query whose join graph is a forest, but the query has some nonkey-to-key
joins that are not full.

Chomicki and Marcinkowski [6] computing consistent answers for a query with a single nonkey-to-nonkey join is
coNP-complete. Their result used a query with repeated relation symbols (specifically, a query with only two literals
both for a single relation R). We can use their insight to show that the problem of computing consistent answers for the
following query without repeated relation symbols, but with a single nonkey-to-nonkey join is also coNP-complete,

qnk = ∃x, x′, y.S1(x, y) ∧ S2(x
′, y).

Notice that qnk has a cycle of length two (actually, a nonkey-to-nonkey join), and no nonkey-to-key joins. Our proof
of hardness is a simple modification to the results of Chomicki and Marcinkowski [6] and uses a reduction from the
problem MONOTONE-3SAT, which is well known to be NP-complete. The only difference between the MONOTONE-
3SAT and 3SAT problems is that the former assumes that the input 3CNF propositional formula is monotone. That is,
each clause Φi contains either positive or negative atoms, but not both. We shall say that a clause that contains only
positive (negative) atoms is a positive (negative) clause.

Lemma 5. Let q be the query ∃x, x′, y.S1(x, y) ∧ S2(x
′, y). Then, CONSISTENT(q,Σ) is coNP-hard.

Proof. We will prove hardness by reduction from MONOTONE-3SAT. Let Φ = Φ1 ∧ · · · ∧ Φm be a 3CNF formula
such that each clause Φi contains either positive or negative atoms, but not both. We shall build an instance I as
follows:

• For each positive clause Φi and each atom z that occurs in Φi , we add a tuple S1(i,z) to I .
• For each negative clause Φi and each atom z that occurs in Φi , we add a tuple S2(i,z) to I .

We now show that consistentΣ(q, I) = false iff Φ is satisfiable.

626 A. Fuxman, R.J. Miller / Journal of Computer and System Sciences 73 (2007) 610–635
(⇒) Since consistentΣ(q, I) = false, there exists a repair I of I such that I 	|= q . We now build a valuation v
for the variables of Φ as follows. For each variable z, we let v(z) = true if there is some i such that S1(i,z) ∈ I;
and we let v(z) = false if there is some i such that S2(i,z) ∈ I . It is easy to see that v is a truth valuation that
satisfies Φ .

(⇐) Assume that Φ is satisfiable. Let v be a truth assignment for the variables of Φ . We shall build a repair
I as follows. For each positive clause Φi , select a variable z that appears in Φi and such that v(z) = true. Let
S1(i,z) ∈ I . For each negative clause Φi , select a variable z that appears in Φi and such that v(z) = false. Let
S2(i,z) ∈ I . It is easy to see that I 	|= q . �

Now, we show the intractability of the problem for a conjunctive query whose join graph is a forest, but the query
has nonkey-to-key joins that are not full. In particular, we focus on the following query:

∃x, x′,w,w′, z, z′,m.R1(x,w) ∧ R2(m,w, z) ∧ R3(x
′,w′) ∧ R4(m,w′, z′).

We prove hardness by showing a reduction from the problem of computing the consistent answers for the query qnk

shown to be coNP-hard in Lemma 5.

Lemma 6. Let q be the query ∃x, x′,w,w′, z, z′,m.R1(x,w) ∧ R2(m,w, z) ∧ R3(x
′,w′) ∧ R4(m,w′, z′). Let

q ′ be the query ∃x, x′, y.S1(x, y) ∧ S2(x
′, y). Then, there is a polynomial time reduction from the problem

CONSISTENT(q ′,Σ ′) to the problem CONSISTENT(q,Σ).

Proof. Let I ′ be an instance over the schema of q ′. We shall build an instance I over the schema of q as follows:

Initialize I as the empty instance
for each tuple S1(c1, d1) ∈ I ′ do

Add R1(c1, d1) to I

end for
for each tuple S2(c2, d2) ∈ I ′ do

Add R3(c2, d2) to I

end for
Let cz, cz′ be some constants
for each valuation νq ′ such that I ′ |= S1(x, y) ∧ S2(x

′, y)[νq ′] do
Let νq(x) = νq ′(x)

Let νq(x′) = νq ′(x′)
Let νq(w) = νq ′(y)

Let νq(w′) = νq ′(y)

Let cm be a newly-created constant
Let νq(m) = cm

Let νq(z) = cz

Let νq(z′) = cz′
Add tuple R2(m,w, z)[νq] to I

Add tuple R4(m,w′, z′)[νq] to I

end for

We claim that consistentΣ(q ′, I ′) = true iff consistentΣ(q, I) = true.
(⇒) Let I be a repair of I . We shall build an instance I ′ as follows:

for each tuple R1(c1, d1) of I do
Add a tuple S1(c1, d1) to I ′

end for
for each tuple R3(c2, d2) of I do

Add a tuple S2(c2, d2) to I ′
end for

A. Fuxman, R.J. Miller / Journal of Computer and System Sciences 73 (2007) 610–635 627
Notice that R1 and S1 (and, similarly, R3 and S2) have the same extensions in I and I ′, respectively. Thus, since I
is a repair of I , I ′ is a repair of I ′. Since consistentΣ(q ′, I ′) = true, I ′ |= q ′. Thus, there is a valuation νq ′ such
that I ′ |= S1(x, y) ∧ S2(x

′, y)[νq ′]. Let c1 = νq ′(x), c2 = νq ′(x′), d = νq ′(y). Let cz and cz′ be the constants used in
the algorithm that constructs I . Let cm be the constant created in the algorithm for the iteration corresponding to νq ′ .
Let νq be a valuation for the variables of q such that:

• νq(x) = c1,
• νq(x′) = c2,
• νq(w) = d ,
• νq(w′) = d ,
• νq(m) = cm,
• νq(z) = cz,
• νq(z′) = cz′ .

Since S1(c1, d) ∈ I ′, R1(c1, d) ∈ I . Since S2(c2, d) ∈ I ′, R3(c2, d) ∈ I . By Proposition 2, I ′ ⊆ I ′. Thus,
S1(c1, d) ∈ I ′ and S2(c2, d) ∈ I ′. Since cm is the constant chosen in the iteration for νq ′ in the algorithm that con-
structs I , R2(cm, d, cz) ∈ I and R4(cm, d, cz′) ∈ I . By Proposition 3, R2(cm, d, e) ∈ I and R4(cm, d, e′) ∈ I , for some
e, e′. Thus, I |= q[νq].

(⇐) Let I ′ be a repair of I ′. We shall build an instance I as follows:

for each tuple S1(c1, d1) ∈ I ′ do
Add R1(c1, d1) to I

end for
for each tuple S2(c2, d2) ∈ I ′ do

Add R3(c2, d2) to I
end for
for each tuple R2(c1, c2, d) ∈ I do

Add R2(c1, c2, d) to I
end for
for each tuple R4(c1, c2, d) ∈ I do

Add R4(c1, c2, d) to I
end for

We now show that I is a repair of I . First, notice that R1 and S1 (and, similarly, R3 and S2) have the same extensions
in I and I ′, respectively. Second, in the construction of I , every tuple of R2 and R4 is given a distinct key value. Then,
by Propositions 2 and 3, every tuple in the extension of R2 in I is in the extension of R2 in I; and every tuple in the
extension of R4 in I is in the extension of R4 in I .

Since consistentΣ(q, I) = true, I |= q . Thus, there exists some valuation νq such that I |= R1(x,w) ∧
R2(m,w, z)∧R3(x

′,w′)∧R4(m,w′, z′)[νq]. By construction of I , if R2 and R4 join on m, then νq(w) = νq(w′). Let
νq ′ be such that:

• νq ′(x) = νq(x),
• νq ′(x′) = νq(x′),
• νq ′(y) = νq(w) = νq(w′).

It is easy to see that I ′ |= S1(x, y) ∧ S2(x
′, y)[νq ′]. Thus, I ′ |= q ′. �

4.2. A dichotomy result

In Section 3, we presented a query rewriting algorithm which works on a class of queries that we call Cforest.
Clearly, Cforest gives sufficient conditions for a query to be first-order rewritable. In this section, we address the
following question: for which class of queries does Cforest also give necessary conditions? That is, we show a class of

628 A. Fuxman, R.J. Miller / Journal of Computer and System Sciences 73 (2007) 610–635
queries such that the problem of computing the consistent answers is coNP-complete for every query of the class which
does not satisfy the conditions of Cforest. Notice that this establishes a dichotomy between first-order rewritability and
coNP-completeness, and is therefore much stronger than the complexity results that we presented in Section 4.1 (and,
in fact, all the complexity results present in the consistent query answering literature [4,6]). In the literature, a class C
is said to be coNP-hard if there is at least one query q ∈ C such that CONSISTENT(q,Σ) is a coNP-hard problem.
Under such a definition, it suffices to exhibit just one intractable query in order to conclude that the entire class is
coNP-complete. In contrast, in this section we will present a class of queries such that for every query q in the class,
CONSISTENT(q,Σ) is coNP-complete.

We will focus on conjunctive queries without repeated relation symbols and all of whose nonkey-to-key joins
are full. Within this class, there are some queries for which the existence of a cycle is not a sufficient condition for
intractability. Consider, for example, the query q5 = ∃x, y.R1(x, y) ∧ R2(x, y). The join graph of this query is not a
forest; yet, it can be rewritten as follows:

∃x, y.R1(x, y) ∧ R2(x, y) ∧ ∀y′.
(
R1(x, y′) → y′ = y

) ∧ ∀y′.
(
R2(x, y′) → y′ = y

)
.

Recall that the problem of computing consistent answers is intractable for the query qnk = ∃x, x′, y.R1(x, y) ∧
R2(x

′, y). Notice that qnk and q5 have exactly the same join graph. The only difference between them is that in qnk ,
the two literals are related exclusively by a nonkey-to-nonkey join; whereas in q5, they are related by both a key-to-
key and a nonkey-to-nonkey join. Our intuition is that a query with a cyclic join graph may be tractable only if there
are literals related by more than one type of join (e.g., nonkey-to-nonkey and key-to-key). We formalize this intuition
with the definition of a class C∗, which essentially “separates” the different types of joins of the query. In C∗, every
pair of literals can be related by at most one of type of join (i.e., key-to-key, nonkey-to-nonkey, and nonkey-to-key).

Definition 9. Let q be a conjunctive query without repeated relation symbols and all of whose nonkey-to-key joins
are full. We say that q is in class C∗ if for every pair R and R′ of literals of q at most one of the following conditions
holds:

• there is a key-to-key join between R and R′,
• there is a nonkey-to-nonkey join between R and R′,
• there are literals R1, . . . ,Rm in q such that there is a nonkey-to-key join from R to R1, from Rm to R′, and from

Ri to Ri+1, for every i such that 1 � i < m.

We will consider a class, called Chard , of all queries of C∗ that are not in Cforest. The main result of this section,
Theorem 2, proves that the problem of computing the consistent answers for every query of Chard is coNP-complete.

Definition 10. We say that a query q is in class Chard if q ∈ C∗ and q /∈ Cforest.

Theorem 2. Let q be a query such that q ∈ Chard. Then, CONSISTENT(q,Σ) is coNP-complete in data complexity.

In general, by Ladner’s Theorem [10], there are classes of coNP problems for which there is no dichotomy between
P and coNP-complete problems. However, this is not the case for the class of queries that is the focus of this section.
In fact, as a corollary of Theorems 1 and 2, we get a dichotomy between membership in P and coNP-completeness.
Notice that, given a query q such that q ∈ C∗, it can be decided in polynomial time on which side of the dichotomy
the query q falls.

Corollary 1. Let q be a query such that q ∈ C∗. Then, CONSISTENT(q,Σ) is either in P , or it is coNP-complete.

Under a complexity-theoretic assumption, we also get a dichotomy between first-order rewritability and first-order
inexpressibility for the class C∗. That is, for all the queries of C∗ that are not in Chard , we can produce a first-order
rewriting using our algorithm RewriteConsistent. For the queries of Chard , since the problem of obtaining
consistent answers is coNP-complete, there is no first-order rewriting, unless P = NP (which is unlikely). An alter-
native approach to proving that there is no first-order rewriting, which we leave as future work, would be to avoid
complexity-theoretic assumptions, and appeal directly to arguments based on game theory.

A. Fuxman, R.J. Miller / Journal of Computer and System Sciences 73 (2007) 610–635 629
Corollary 2. Let q be a query such that q ∈ C∗. Assuming P 	= NP, the problem CONSISTENT(q,Σ) is first-order
rewritable iff q ∈ Cforest.

Notice that Corollary 2 is a stronger result than Corollary 1 since it is well known that there are problems that
are tractable but not expressible in first-order logic [12]. In particular, in previous work [8], we showed examples of
queries (which are outside C∗) for which the problem of obtaining consistent answers is tractable but not first-order
rewritable.

The intractability of all queries in Chard will be shown as follows. First, we show in Lemma 7 that the problem
of computing consistent answers for conjunctive queries is in coNP. This is a result known in the literature, but we
briefly give a proof for our setting. For hardness, we will use a reduction from the problem of computing consistent
answers for one of two particular queries to the problem of computing consistent answers for q . One of these specific
queries is the query qnk = ∃x, x′, y.S1(x, y) ∧ S2(x

′, y). This query has a nonkey-to-nonkey join, and was shown to
be intractable in Lemma 5. The other query has a cycle of nonkey-to-key joins, and is shown to be intractable in
Lemma 8.

The next lemma shows that the problem of computing consistent answers for conjunctive queries is in coNP.

Lemma 7. Let q be a conjunctive query. The problem CONSISTENT(q,Σ) is in coNP.

Proof. Let I be an instance. In order to decide whether �t /∈ consistentΣ(q, I), it suffices to show a repair I of I

such that I 	|= q[�t]. The size of I is polynomially bounded by the size of I . In particular, by Proposition 2, I ⊆ I .
Furthermore, I 	|= q[�t] can be checked in polynomial time, since q is a conjunctive query. �

In the next lemma, we show the coNP hardness of computing consistent answers for one of the two particular
queries that will be used in Lemma 11. The coNP-hardness of the other query was proven in Lemma 5.

Lemma 8. Let q = ∃x, y.T1(x, y) ∧ T2(y, x). Then, the problem CONSISTENT(q,Σ) is coNP-hard.

Proof. We will prove hardness by reduction from MONOTONE-3SAT. Let Φ = Φ1 ∧ · · · ∧ Φm be a monotone 3CNF
formula. We shall build an instance I as follows:

• For each atom z, let Φi1, . . . ,Φin be the positive clauses where z occurs. Add tuples T1(〈Φi1 , . . . ,Φin〉,z) and
T2(z, 〈Φi1, . . . ,Φin〉) to I .

• For each atom z, let Φi1, . . . ,Φin be the negative clauses where z occurs. Add tuples T1(〈Φi1 , . . . ,Φin〉,z) and
T2(z, 〈Φi1, . . . ,Φin〉) to I .

We now show that consistentΣ(q, I) = false iff Φ is satisfiable.
(⇒) Since consistentΣ(q, I) = false, there exists a repair I of I such that I 	|= q . Assume towards a contradic-

tion that there are tuples T1(c,z) ∈ I and T1(c
′,z) ∈ I such that c 	= c′. By construction of I , if T2(z, d) ∈ I , then

d = c or d = c′. By Propositions 2 and 3, either T2(z, c) ∈ I or T2(z, c′) ∈ I . Thus, I |= q; contradiction.
We now build a valuation v for the variables of Φ as follows. For each variable z, we let v(z) = true if there is

some c such that T1(c,z) ∈ I and c is a list of positive clauses; and we let v(z) = false if there is some i such that
T1(c,z) ∈ I , and c is a list of negative clauses. It is easy to see that v is a truth valuation that satisfies Φ .

(⇐) Assume that Φ is satisfiable. Let v be a truth assignment for the variables of Φ . We shall build a repair I as
follows. For each positive clause Φi , select a variable z that appears in Φi and such that v(z) = true. Add T1(c,z)

to I , where c is a list of positive clauses. For each negative clause Φi , select a variable z that appears in Φi and such
that v(z) = false. Add T1(c,z) to I , where c is a list of negative clauses. For each variable z, if v(z) = false,
add T2(z, c) to I , where c is a list of positive clauses; if v(z) = true, add T2(z, c) to I , where c is a list of negative
clauses. It is easy to see that I 	|= q . �

We now give some auxiliary results before proving Lemma 11. The next lemma generalizes Lemma 8 from cycles
of length two to the case of cycles of arbitrary length.

630 A. Fuxman, R.J. Miller / Journal of Computer and System Sciences 73 (2007) 610–635
Lemma 9. Let q be the query ∃w1, . . . ,wm.S1(wm,w1)∧S2(w1,w2)∧· · ·∧Sm(wm−1,wm). Let q ′ = ∃x, y.T1(x, y)∧
T2(y, x). Then, there is a polynomial time reduction from the problem CONSISTENT(q ′,Σ ′) to the problem
CONSISTENT(q,Σ).

Proof. Let I ′ be an instance over the schema of q ′. We shall build an instance I over the schema of q as follows:

for each valuation νq ′ for the variables of q ′ such that I ′ |= T1(x, y) ∧ T2(y, x)[νq ′] do
Let νq(wm) = νq ′(x)

Let νq(w1) = νq ′(y)

Create a new constant cnew

for i := 2 to m − 1 do
Let νq(wi) = cnew

end for
Add the tuples of S1(wm,w1) ∧ S2(w1,w2) ∧ · · · ∧ Sm(wm−1,wm)[νq] to I

end for

We claim that consistentΣ(q ′, I ′) = true iff consistentΣ(q, I) = true.
(⇒) Let I be a repair of I over the schema of q . We shall build a repair I ′ over the schema of q ′ as follows:

for each tuple S1(cm, c1) of I do
Add a tuple T1(cm, c1) to I ′
for each cnew such that S2(c1, cnew) ∈ I and Sm(cnew, cm) ∈ I do

Add a tuple T2(c1, cm) to I ′
end for

end for

Since consistentΣ(q ′, I ′) = true, I ′ |= q ′. Thus, there is a valuation νq ′ such that I ′ |= T1(x, y)∧ T2(y, x)[νq ′]. Let
cm = νq ′(x), c1 = νq ′(y). Since T2(c1, cm) ∈ I ′, there exists cnew such that S2(c1, cnew) ∈ I and Sm(cnew, cm) ∈ I . Let
νq be a valuation for the variables of q such that:

• νq(wm) = cm,
• νq(w1) = c1,
• νq(wi) = cnew, for 1 < i < m.

Since T1(cm, c1) ∈ I ′, S1(cm, c1) ∈ I . By construction of νq , S2(c1, cnew) ∈ I and Sm(cnew, cm) ∈ I . For 2 < i � m,
notice that by construction of I , there are no tuples Si(ci, di) and Si(ci, d

′
i) in I such that di 	= d ′

i . Therefore, by
Propositions 2 and 3, every tuple in the extension of Si in I appears in the extension of Si in I . By construction of I ,
Si(cnew, cnew) ∈ I , for 3 � i � m − 1. Thus, Si(cnew, cnew) ∈ I . We conclude that I |= S1(wm,w1) ∧ S2(w1,w2) ∧
· · · ∧ Sm(wm−1,wm)[νq]. Thus, I |= q .

(⇐) Let I ′ be a repair of I ′. We shall build an instance I as follows:

for each tuple T1(cm, c1) of I ′ do
Add a tuple S1(cm, c1) to I
Let cnew be a constant such that S2(c1, cnew) ∈ I and Sm(cnew, cm) ∈ I

Add a tuple S2(c1, cnew) to I
for i := 3 to m − 1 do

Add a tuple Si(cnew, cnew) to I
end for
Add a tuple Sm(cnew, cm) to I

end for

A. Fuxman, R.J. Miller / Journal of Computer and System Sciences 73 (2007) 610–635 631
It is easy to see that I is a repair of I . Since consistentΣ(q, I) = true, I |= q . Thus, there exists some valuation νq

such that I |= S1(wm,w1) ∧ S2(w1,w2) ∧ · · · ∧ Sm(wm−1,wm)[νq]. Let νq ′ be such that:

• νq ′(x) = νq(wm),
• νq ′(y) = νq(wm1).

It is easy to see that I ′ |= T1(x, y) ∧ T2(y, x)[νq ′]. Thus, I ′ |= q ′. �
Our strategy for proving the dichotomy will be to show that if q has a subquery q ′ that is known to be intractable

(in particular, a cycle), then q is not tractable. This does not hold in general, but as we show with the next auxiliary
result, it holds for the queries in C∗.

Lemma 10. Let q be a Boolean query such that q ∈ C∗. Let R1(�x1, �y1), . . . ,Rn(�xn, �yn) be the literals of q . Let q ′ be
a Boolean query. Let S1(x1, y1), . . . , Sm(xm,ym) be the literals of q ′, where m � n. Assume that the join graph of q ′
is a cycle. Let L = {x1, y1, . . . , xm, ym}. Assume that:

• xi occurs in �xi , for 1 � i � m, and
• yi occurs in �yi , for 1 � i � m, and
• for 1 � i � m, if w ∈ L and w occurs in Ri , then w occurs in Si .

Then, there is a polynomial-time reduction from the problem CONSISTENT(q ′,Σ ′) to CONSISTENT(q,Σ).

Proof. Let F = {w: w occurs in Ri, and 1 � i � m} − L. Let U = {w: w occurs in q} − F − L.
Let I ′ be an instance over the schema of q ′. We shall build an instance I over the schema of q as follows:

for each variable w such that w ∈ F do
Create a new constant cnew

Let νF (w) = cnew

end for
for each valuation νq ′ for the variables of q ′ such that I ′ |= S1(x1, y1) ∧ · · · ∧ Sm(xm,ym)[νq ′] do

for each variable w such that w ∈ F do
Let νq(w) = νF (w)

end for
for each variable w such that w ∈ U do

Create a new constant cnew

Let νq(w) = cnew

end for
for i := 1 to m do

Let νq(xi) = νq ′(xi)

Let νq(yi) = νq ′(yi)

end for
Add the tuples of R1(�x1, �y1) ∧ · · · ∧ Rn(�xn, �yn)[νq] to I

end for

We claim that consistentΣ(q ′, I ′) = true iff consistentΣ(q, I) = true.
(⇒) Let I be a repair of I over the schema of q . We shall build an instance I ′ over the schema of q ′ as follows:

for i := 1 to m do
for each tuple Ri(�ci, �di) of I do

Let ci be the constant that appears in �ci at the position of one of the occurrences of xi in �xi

Let di be the constant that appears in �di at the position of yi in �yi

Add Si(ci, di) to I ′
end for

end for

632 A. Fuxman, R.J. Miller / Journal of Computer and System Sciences 73 (2007) 610–635
We make the following observations with respect to the construction of I ′. By construction of I , if Ri(�ci, �di) ∈ I ,
the same constant appears in �ci at all the positions where xi appears in �xi . By Proposition 2, I ⊆ I . Thus, in the
construction of I ′, it suffices to choose the constant that occurs in �ci at any of the positions where xi occurs in �xi .

Assume that I ′ is not a repair of I ′. Then, there are constants ci , di and d ′
i such that di 	= d ′

i , Si(ci, di) ∈ I ′ and
Si(ci, d

′
i) ∈ I ′. By construction of I ′, there are tuples Ri(�ci, �di) ∈ I and Ri(�c′

i ,
�d ′
i) ∈ I such that ci appears in �ci and

�c′
i at all the positions where xi appears in �xi ; and di and d ′

i appear in �di and �d ′
i , respectively, at the position of yi in �yi .

Clearly, �di 	= �d ′
i . By construction of I , if w is a variable such that w /∈ L, w is assigned the value νF (w) in every tuple

of I . By Proposition 2, I ⊆ I . Thus, �ci = �c′
i . Since �di 	= �d ′

i , I does not satisfy the key constraints of Σ . Thus I is not
a repair; contradiction. We conclude that I ′ is a repair of I ′.

Since consistentΣ(q ′, I ′) = true, I ′ |= q ′. Thus, there is some valuation νq ′ such that I ′ |= S1(x1, y1) ∧ · · · ∧
Sm(xm,ym)[νq ′]. Let νm be a valuation for the variables of R1, . . . ,Rm such that:

• νm(xi) = νq ′(xi), for 1 � i � m,
• νm(yi) = νq ′(yi), for 1 � i � m,
• νm(w) = νF (w) if w ∈ F .

Let w be a variable that appears in Ri , for 1 � i � m. If w ∈ L and w occurs in Ri , by hypothesis, w occurs in Si . If
w /∈ L, then w ∈ F , by definition of F . Since I ′ |= S1(x1, y1) ∧ · · · ∧ Sm(xm,ym)[νq ′], and νm(w) = νF (w) if w ∈ F ,
we conclude that I |= R1(�x1, �y1) ∧ · · · ∧ Rm(�xm, �ym)[νm].

By construction of I , there is a valuation νq for the variables of q such that:

• νm(w) = νq(w) if w appears in Ri , for 1 � i � m; and
• I |= R1(�x1, �y1) ∧ · · · ∧ Rn(�xn, �yn)[νq].

Let Ri(�xi, �yi) be a literal of q such that i > m. Notice that we assume that the join graph of q ′ is a cycle. Since q is
in C∗, there exists some variable w such that w occurs in �xi and w does not occur in any of R1, . . . ,Rm. Thus, w ∈ U .
Since the variables of U are assigned a distinct constant in every iteration of the algorithm that constructs I , if two
tuples Ri(�ci, �di) and Ri(�c′

i ,
�d ′
i) are added at different iterations, then �ci 	= �c′

i . Therefore, by Propositions 2 and 3, every
tuple in the extension of Ri in I is in the extension of Ri in I . Therefore, I |= R1(�x1, �y1) ∧ · · · ∧ Rn(�xn, �yn)[νq].

(⇐) Let I ′ be a repair of I ′. We shall build an instance I as follows:

for i := 1 to m do
for each tuple Si(ci, di) of I ′ do

Let Ri(�ci, �di) be a tuple of I such that ci appears in �ci at all the positions of xi in �xi , and
di appears in �di at the position of yi in �yi

Add Ri(�ci, �di) to I
end for

end for
for i := m + 1 to n do

for each tuple Ri(�ci, �di) in I do
Add Ri(�ci, �di) to I

end for
end for

We will now show that I is a repair of I . Towards a contradiction, assume that I is not a repair of I . Then, there are
values �ci , �di , and �d ′

i such that �di 	= �d ′
i , Ri(�ci, �di) ∈ I , and Ri(�ci, �d ′

i) ∈ I .
First, assume that 1 � i � m. For every variable w such that w /∈ L and w occurs in Ri , w ∈ F . Thus, w is assigned

the same constant νF (w) in every tuple of I . By Proposition 2, I ⊆ I . Therefore, there are constants ci , di and d ′
i

such that di 	= d ′
i , ci appears in �ci at the positions of xi in �xi , and di and d ′

i appears in �di and �d ′
i , respectively, at the

position of yi in �yi . By construction of I , there are tuples Si(ci, di) and Si(ci, d
′
i) in I ′. Since di 	= d ′

i , I ′ does not
satisfy the key constraints of Σ ′. Thus, I ′ is not a repair; contradiction.

A. Fuxman, R.J. Miller / Journal of Computer and System Sciences 73 (2007) 610–635 633
Now, assume that m < i � n. Notice that we assume that the join graph of q ′ is a cycle. Since q is in C∗, there
exists some variable w such that w occurs in �xi and w does not occur in any of R1, . . . ,Rm. Thus, w ∈ U . Since
the variables of U are assigned a different constant in every iteration of the algorithm that constructs I , if two tuples
Ri(�ci, �di) and Ri(�c′

i ,
�d ′
i) are added at different iterations, then �ci 	= �c′

i . Therefore, the extension of Ri in I satisfies the
key dependencies of Σ . Thus, by construction of I , the extension of Ri in I satisfies the key constraints of Σ . Thus,
I is a repair of I ; contradiction.

We conclude that I is a repair of I . Since consistentΣ(q, I) = true, I |= q . Thus, there exists some valuation νq

such that I |= R1(�x1, �y1)∧· · ·∧Rn(�xn, �yn)[νq]. Let νq ′ be a valuation for the variables of q ′ such that, for 1 � i � m:

• νq ′(xi) = νq(xi),
• νq ′(yi) = νq(yi).

It is easy to see that I ′ |= S1(x1, y1) ∧ · · · ∧ Sm(xm,ym)[νq ′]. Thus, I ′ |= q ′. �
We are now ready to prove Lemma 11, which gives a polynomial-time reduction from the problem of computing

consistent answers for the queries of Lemmas 5 or 8 to every query in Chard . From this, Theorem 2 follows directly.

Lemma 11. Let q be a query s.t. q ∈ Chard. Then, there is a polynomial-time reduction from CONSISTENT(q ′,Σ ′) to
CONSISTENT(q,Σ), where q ′ is one of the following queries:

• ∃x, x′, y.S1(x, y) ∧ S2(x
′, y),

• ∃x, y.T1(x, y) ∧ T2(y, x).

Proof. Let G be the join graph of q . Let G′ be an induced subgraph of G such that:

• G′ is connected, and
• G′ is not a tree, and
• if G′′ is a proper induced subgraph of G′, and G′′ is connected, then G′′ is a tree.

Let P = 〈R1,R2,R1〉 be a cycle of G′. Let R1(�x1, �y1) and R2(�x2, �y2) be the literals in G′. Assume that there is some
variable y such that y occurs in �y1 and �y2. By Definition of C∗, there is no key-to-key join between R1 and R2.
Therefore, there exists a variable x such that x occurs in �x1, and x does not occur in �x2; and a variable x′ such that
x′ occurs in �x2 and x′ does not occur in �x1. Let q ′ = S1(x, y) ∧ S2(x

′, y). By Lemma 10, there is a polynomial-time
reduction from CONSISTENT(q ′,Σ ′) to CONSISTENT(q,Σ).

Let P = 〈R1, . . . ,Rm,R1〉 be a cycle of G′. Let R1(�x1, �y1), . . . ,Rm(�xm, �ym) be the literals of P . Let w1,w2,

. . . ,wm be variables such that wi occurs in �yi and in R(i mod m)+1, for every 1 � i � m. Assume that there is
some wi such that 1 � i � m and wi occurs in some literal Rj of q such that j 	= i and j 	= (i mod m) + 1.
Then {R1, . . . ,Ri,Rj , . . . ,R1} is a cycle. Therefore G′ contains a proper induced subgraph G′′ such that G′′ is
connected, and G′′ is not a tree; contradiction. Let q ′′ = S1(wm,w1) ∧ S2(w1,w2) ∧ · · · ∧ Sm(wm−1,wm). It can
be checked that q and q ′′ satisfy the conditions of Lemma 10. Consequently, there is a polynomial-time reduction
from CONSISTENT(q,′′ Σ ′′) to CONSISTENT(q,Σ). Let q ′ = ∃x, y.T1(x, y) ∧ T2(y, x). By Lemma 9, there is a
polynomial-time reduction from CONSISTENT(q ′,Σ ′) to CONSISTENT(q,′′ Σ ′′). �

Finally, we give the proof for Theorem 2, the main result of this section.

Theorem 2. Let q be a query such that q ∈ Chard. Then, CONSISTENT(q,Σ) is coNP-complete in data complexity.

Proof. By Lemma 7, CONSISTENT(q,Σ) is in coNP. In order to prove hardness, let q ′ be one of the following
queries:

• ∃x, x′, y.S1(x, y) ∧ S2(x
′, y),

• ∃x, y.T1(x, y) ∧ T2(y, x).

634 A. Fuxman, R.J. Miller / Journal of Computer and System Sciences 73 (2007) 610–635
By Lemma 11, there is a polynomial-time reduction from CONSISTENT(q ′,Σ ′) to CONSISTENT(q,Σ). By Lem-
mas 5 and 8, CONSISTENT(q ′,Σ ′) is coNP-hard. Thus, CONSISTENT(q,Σ) is coNP-hard. �
5. Related work

The main difference between this work and others in the consistent query answering literature is our focus on
producing a first-order rewriting. Instead of rewriting into first-order formulas, most work in the literature is based
on rewriting into logic programs (e.g., [5] and [3]). Their focus is on obtaining correct disjunctive logic programs for
(usually large) classes of queries and constraints. However, given the high complexity of disjunctive logic program-
ming, none of these approaches focus on tractability issues.

The work on disjunctive databases [13] is relevant in our context. In particular, if Σ is a set of key dependencies,
the set of all repairs of an inconsistent database can be represented as a disjunctive database D in such a way that
each repair corresponds to a minimal model of D. However, there are no results in the literature for first-order query
rewriting over disjunctive databases. The only tractability results in this context have been given for OR-databases [9],
which are a restricted type of disjunctive databases. However, in general, given a database I possibly inconsistent with
respect to a set of key dependencies, there may be no OR-database D such that all the models of D are repairs of I .

There are two proposals in the consistent query answering literature that are based on first-order query rewriting,
but they apply to very restricted classes of queries. Arenas et al. [1] consider quantifier-free conjunctive queries (i.e.,
queries without existential quantifiers). Chomicki and Marcinkowski [6] propose a rewriting for simple conjunctive
queries, which are queries where no variables are shared between literals (and therefore, there are no joins). We have
presented a query rewriting for a much larger, and practical, class of queries.

Chomicki and Marcinkowski [6] and Calì et al. [4] thoroughly study the decidability and complexity of consistent
query answering for several classes of queries and integrity constraints. In order to show intractability of a class, they
take the usual approach of exhibiting one particular query of the class for which the problem is intractable. To the best
of our knowledge, ours is the first dichotomy result in the area of consistent query answering.

6. Conclusions and future work

We presented a query rewriting algorithm for computing consistent answers. The algorithm works on a large and
practical class of conjunctive queries without repeated relation symbols. We are currently extending the algorithm in
order to take into account queries with repeated relation symbols. Our algorithm works on queries with full nonkey-
to-key joins whose join graph is a forest. We showed a class of queries C∗ in which this is in fact a necessary and
sufficient condition for a query to be first-order rewritable. For this class of queries, our algorithm covers all queries
which are first-order rewritable. We have mentioned that, outside the class C∗, there are some queries whose join graph
is not a forest, yet they are first-order rewritable. We are working on an extension of our algorithm that considers such
queries.

The focus of this paper is on producing first-order rewritings. For the queries in C∗, every tractable query is first-
order rewritable. However, in general, a polynomial-time computable query may not be first-order rewritable. Indeed,
in our earlier work, we have shown examples of conjunctive queries with repeated relation symbols that are tractable
but not first-order rewritable [8]. It is still open, however, whether there are such examples for the class of conjunctive
queries without repeated relations symbols.

In this work, we assumed that the set Σ of constraints that might be violated consists of key dependencies. It would
be interesting to consider foreign key dependencies as well. In this way, we would be covering the most common
constraints that are supported by commercial database systems.

Acknowledgments

We thank Marcelo Arenas, Pablo Barcelo, Leonid Libkin, and Ken Pu for their comments and feedback.

References

[1] M. Arenas, L. Bertossi, J. Chomicki, Consistent query answers in inconsistent databases, in: Principles of Database Systems (PODS), 1999,
pp. 68–79.

A. Fuxman, R.J. Miller / Journal of Computer and System Sciences 73 (2007) 610–635 635
[2] S. Abiteboul, O.M. Duschka, Complexity of answering queries using materialized views, in: Principles of Database Systems (PODS), 1998,
pp. 254–263.

[3] L. Bravo, L. Bertossi, Logic programs for consistently querying data integration systems, in: International Joint Conference on Artificial
Intelligence (IJCAI), 2003, pp. 10–15.

[4] A. Calì, D. Lembo, R. Rosati, On the decidability and complexity of query answering over inconsistent and incomplete databases, in: Principles
of Database Systems (PODS), 2003, pp. 260–271.

[5] A. Calì, D. Lembo, R. Rosati, Query rewriting and answering under constraints in data integration systems, in: International Joint Conference
on Artificial Intelligence (IJCAI), 2003, pp. 16–21.

[6] J. Chomicki, J. Marcinkowski, Minimal-change integrity maintenance using tuple deletions, Inform. and Comput. 1–2 (197) (2005) 90–121.
[7] R. Fagin, P. Kolaitis, R. Miller, L. Popa, Data exchange: Semantics and query answering, Theoret. Comput. Sci. 336 (1) (2005) 89–124.
[8] A. Fuxman, R.J. Miller, Towards inconsistency management in data integration systems, in: Workshop on Information Integration on the Web,

2003, pp. 143–148.
[9] T. Imielinski, R. van der Meyden, K. Vadaparty, Complexity tailored design: A new design methodology for databases with incomplete

information, J. Comput. System Sci. 51 (3) (1995) 405–432.
[10] R.E. Ladner, On the structure of polynomial time reducibility, J. ACM 22 (1) (1975) 155–171.
[11] M. Lenzerini, Data integration: A theoretical perspective, in: Principles of Database Systems (PODS), 2002, pp. 233–246.
[12] L. Libkin, Elements Of Finite Model Theory, Springer, 2004.
[13] R. van der Meyden, Logical approaches to incomplete information: A survey, in: Logics for Databases and Information Systems, Kluwer,

1998, pp. 307–356.

